We describe the landscape of news sources which share social media audience. We focus on 639 news sources, both credible and questionable, and characterize them according to the audience that shares their articles on Twitter. Based on user co-sharing practices, what communities of news sources emerge? We find four groups: one is home to mainstream, high-circulation sources from all sides of the political spectrum; one to satirical, left-leaning sources; one to bipartisan conspiratorial, pseudo-scientific sources; and one to rightleaning, deliberate misinformation sources. Next, we measure which assessments of credibility, impartiality, and journalistic integrity correspond to social media readers' choices of news sources, and uncover the multifaceted structure of the social news sphere. We show how news articles shared on Twitter differ across the four groups along linguistic and psycholinguistics measures. Further, we find that with a high degree of accuracy (~80%), we can classify in what news community an article belongs to. Our data-driven categorization of news sources will help to navigate the complex landscape of online news and has implications for social media platform maintainers to reliably triage questionable outlets.

Characterizing the social media news sphere through user co-sharing practices / Samory, M.; Abnousi, V. K.; Mitra, T.. - (2020), pp. 602-613. (Intervento presentato al convegno 14th International AAAI Conference on Web and Social Media, ICWSM 2020 tenutosi a online).

Characterizing the social media news sphere through user co-sharing practices

Samory M.;
2020

Abstract

We describe the landscape of news sources which share social media audience. We focus on 639 news sources, both credible and questionable, and characterize them according to the audience that shares their articles on Twitter. Based on user co-sharing practices, what communities of news sources emerge? We find four groups: one is home to mainstream, high-circulation sources from all sides of the political spectrum; one to satirical, left-leaning sources; one to bipartisan conspiratorial, pseudo-scientific sources; and one to rightleaning, deliberate misinformation sources. Next, we measure which assessments of credibility, impartiality, and journalistic integrity correspond to social media readers' choices of news sources, and uncover the multifaceted structure of the social news sphere. We show how news articles shared on Twitter differ across the four groups along linguistic and psycholinguistics measures. Further, we find that with a high degree of accuracy (~80%), we can classify in what news community an article belongs to. Our data-driven categorization of news sources will help to navigate the complex landscape of online news and has implications for social media platform maintainers to reliably triage questionable outlets.
2020
14th International AAAI Conference on Web and Social Media, ICWSM 2020
social media; news; misinformation; polarization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Characterizing the social media news sphere through user co-sharing practices / Samory, M.; Abnousi, V. K.; Mitra, T.. - (2020), pp. 602-613. (Intervento presentato al convegno 14th International AAAI Conference on Web and Social Media, ICWSM 2020 tenutosi a online).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact