We study the automorphisms of modular curves associated to Cartan subgroups of GL(2,Z/nZ) and certain subgroups of their normalizers. We prove that if n is large enough, all the automorphisms are induced by the ramified covering of the complex upper half-plane. We get new results for non-split curves of prime level p>12: the curve Xns+(p) has no non-trivial automorphisms, whereas the curve Xns(p) has exactly one non-trivial automorphism. Moreover, as an immediate consequence of our results we compute the automorphism group of X0*(n):=X0(n)/W, where W is the group generated by the Atkin-Lehner involutions of X0(n) and n is a large enough square.
Automorphisms of Cartan modular curves of prime and composite level / Dose, Valerio; Lido, GUIDO MARIA; Mercuri, Pietro. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 16:6(2022), pp. 1423-1461. [10.2140/ant.2022.16.1423]
Automorphisms of Cartan modular curves of prime and composite level
Valerio Dose;Guido Lido;Pietro Mercuri
2022
Abstract
We study the automorphisms of modular curves associated to Cartan subgroups of GL(2,Z/nZ) and certain subgroups of their normalizers. We prove that if n is large enough, all the automorphisms are induced by the ramified covering of the complex upper half-plane. We get new results for non-split curves of prime level p>12: the curve Xns+(p) has no non-trivial automorphisms, whereas the curve Xns(p) has exactly one non-trivial automorphism. Moreover, as an immediate consequence of our results we compute the automorphism group of X0*(n):=X0(n)/W, where W is the group generated by the Atkin-Lehner involutions of X0(n) and n is a large enough square.File | Dimensione | Formato | |
---|---|---|---|
Dose_postprint_Automorphisms_2022.pdf.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
591.25 kB
Formato
Adobe PDF
|
591.25 kB | Adobe PDF | |
Dose_Automorphisms_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.