We study the automorphisms of modular curves associated to Cartan subgroups of GL(2,Z/nZ) and certain subgroups of their normalizers. We prove that if n is large enough, all the automorphisms are induced by the ramified covering of the complex upper half-plane. We get new results for non-split curves of prime level p>12: the curve Xns+(p) has no non-trivial automorphisms, whereas the curve Xns(p) has exactly one non-trivial automorphism. Moreover, as an immediate consequence of our results we compute the automorphism group of X0*(n):=X0(n)/W, where W is the group generated by the Atkin-Lehner involutions of X0(n) and n is a large enough square.

Automorphisms of Cartan modular curves of prime and composite level / Dose, Valerio; Lido, GUIDO MARIA; Mercuri, Pietro. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 16:6(2022), pp. 1423-1461. [10.2140/ant.2022.16.1423]

Automorphisms of Cartan modular curves of prime and composite level

Valerio Dose;Guido Lido;Pietro Mercuri
2022

Abstract

We study the automorphisms of modular curves associated to Cartan subgroups of GL(2,Z/nZ) and certain subgroups of their normalizers. We prove that if n is large enough, all the automorphisms are induced by the ramified covering of the complex upper half-plane. We get new results for non-split curves of prime level p>12: the curve Xns+(p) has no non-trivial automorphisms, whereas the curve Xns(p) has exactly one non-trivial automorphism. Moreover, as an immediate consequence of our results we compute the automorphism group of X0*(n):=X0(n)/W, where W is the group generated by the Atkin-Lehner involutions of X0(n) and n is a large enough square.
2022
modular curves; elliptic curves; complex multiplication; automorphisms;
01 Pubblicazione su rivista::01a Articolo in rivista
Automorphisms of Cartan modular curves of prime and composite level / Dose, Valerio; Lido, GUIDO MARIA; Mercuri, Pietro. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 16:6(2022), pp. 1423-1461. [10.2140/ant.2022.16.1423]
File allegati a questo prodotto
File Dimensione Formato  
Dose_postprint_Automorphisms_2022.pdf.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 591.25 kB
Formato Adobe PDF
591.25 kB Adobe PDF
Dose_Automorphisms_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact