We tackle the problem of predicting whether a target user (or group of users) will be active within an event stream before a time horizon. Our solution, called PATH, leverages recurrent neural networks to learn an embedding of the past events. The embedding allows to capture influence and susceptibility between users and places closer (the representation of) users that frequently get active in different event streams within a small time interval. We conduct an experimental evaluation on real world data and compare our approach with related work.

Temporal Recurrent Activation Networks / Manco, G.; Pirro', Giuseppe.; Ritacco, E.. - 2161:(2018). (Intervento presentato al convegno 26th Italian Symposium on Advanced Database Systems, SEBD 2018 tenutosi a Ethra Reserve, ita).

Temporal Recurrent Activation Networks

Pirro' Giuseppe.
;
2018

Abstract

We tackle the problem of predicting whether a target user (or group of users) will be active within an event stream before a time horizon. Our solution, called PATH, leverages recurrent neural networks to learn an embedding of the past events. The embedding allows to capture influence and susceptibility between users and places closer (the representation of) users that frequently get active in different event streams within a small time interval. We conduct an experimental evaluation on real world data and compare our approach with related work.
2018
26th Italian Symposium on Advanced Database Systems, SEBD 2018
Deep Learning; Sequence Prediction
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Temporal Recurrent Activation Networks / Manco, G.; Pirro', Giuseppe.; Ritacco, E.. - 2161:(2018). (Intervento presentato al convegno 26th Italian Symposium on Advanced Database Systems, SEBD 2018 tenutosi a Ethra Reserve, ita).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655441
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact