Given any l-tuple (s1, s2,..., sl) of positive integers, there is an integer N = N (s1, s2,..., sl) such that an orthogonal design of order 2n (s1+s2+...+sl) and type (2ns1, 2ns2,..., 2nsl) exists, for each n ≥ N. This complements a result of Eades et al. which in turn implies that if the positive integers s1, s2,..., s_l are all highly divisible by 2, then there is a full orthogonal design of type (s1, s2,..., sl).

The asymptotic existence of orthogonal designs

Ghaderpour E.
;
2014

Abstract

Given any l-tuple (s1, s2,..., sl) of positive integers, there is an integer N = N (s1, s2,..., sl) such that an orthogonal design of order 2n (s1+s2+...+sl) and type (2ns1, 2ns2,..., 2nsl) exists, for each n ≥ N. This complements a result of Eades et al. which in turn implies that if the positive integers s1, s2,..., s_l are all highly divisible by 2, then there is a full orthogonal design of type (s1, s2,..., sl).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655316
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact