The least-squares wavelet analysis (LSWA) is a robust method of analyzing any type of time/data series without the need for editing and preprocessing of the original series. The LSWA can rigorously analyze any non-stationary and equally/unequally spaced series with an associated covariance matrix that may have trends and/or datum shifts. The least-squares cross-wavelet analysis complements the LSWA in the study of the coherency and phase differences of two series of any type. A MATLAB software package including a graphical user interface is developed for these methods to aid researchers in analyzing pairs of series. The package also includes the least-squares spectral analysis, the antileakage least-squares spectral analysis, and the least-squares cross-spectral analysis to further help researchers study the components of interest in a series. We demonstrate the steps that users need to take for a successful analysis using three examples: two synthetic time series, and a Global Positioning System time series.
LSWAVE. A MATLAB software for the least-squares wavelet and cross-wavelet analyses / Ghaderpour, E.; Pagiatakis, S. D.. - In: GPS SOLUTIONS. - ISSN 1080-5370. - 23:2(2019). [10.1007/s10291-019-0841-3]
LSWAVE. A MATLAB software for the least-squares wavelet and cross-wavelet analyses
Ghaderpour E.
Primo
Writing – Original Draft Preparation
;
2019
Abstract
The least-squares wavelet analysis (LSWA) is a robust method of analyzing any type of time/data series without the need for editing and preprocessing of the original series. The LSWA can rigorously analyze any non-stationary and equally/unequally spaced series with an associated covariance matrix that may have trends and/or datum shifts. The least-squares cross-wavelet analysis complements the LSWA in the study of the coherency and phase differences of two series of any type. A MATLAB software package including a graphical user interface is developed for these methods to aid researchers in analyzing pairs of series. The package also includes the least-squares spectral analysis, the antileakage least-squares spectral analysis, and the least-squares cross-spectral analysis to further help researchers study the components of interest in a series. We demonstrate the steps that users need to take for a successful analysis using three examples: two synthetic time series, and a Global Positioning System time series.File | Dimensione | Formato | |
---|---|---|---|
Ghaderpour_LSWAVE_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.