We prove that the KdV equation on the circle remains exactly controllable in arbitrary time with localized control, for sufficiently small data, also in the presence of quasilinear perturbations, namely nonlinearities containing up to three space derivatives, having a Hamiltonian structure at the highest orders. We use a procedure of reduction to constant coefficients up to order zero (adapting a result of Baldi, Berti and Montalto (2014)), the classical Ingham inequality and the Hilbert uniqueness method to prove the controllability of the linearized operator. Then we prove and apply a modified version of the Nash-Moser implicit function theorems by Hörmander (1976, 1985).
Exact controllability for quasilinear perturbations of KdV / Baldi, P.; Floridia, G.; Haus, E.. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 10:2(2017), pp. 281-322. [10.2140/apde.2017.10.281]
Exact controllability for quasilinear perturbations of KdV
Floridia G.;
2017
Abstract
We prove that the KdV equation on the circle remains exactly controllable in arbitrary time with localized control, for sufficiently small data, also in the presence of quasilinear perturbations, namely nonlinearities containing up to three space derivatives, having a Hamiltonian structure at the highest orders. We use a procedure of reduction to constant coefficients up to order zero (adapting a result of Baldi, Berti and Montalto (2014)), the classical Ingham inequality and the Hilbert uniqueness method to prove the controllability of the linearized operator. Then we prove and apply a modified version of the Nash-Moser implicit function theorems by Hörmander (1976, 1985).File | Dimensione | Formato | |
---|---|---|---|
Baldi_Exact_2017.pdf
solo gestori archivio
Note: Versione pubblicata
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
674.56 kB
Formato
Adobe PDF
|
674.56 kB | Adobe PDF | Contatta l'autore |
1510.07538.pdf
accesso aperto
Note: Versione depositata in ArXiv
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
503.11 kB
Formato
Adobe PDF
|
503.11 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.