Using the Bruck-Ryser-Chowla theorem and the identity $v\lambda= k^2-n$ it is proved that, for any $(v,k,\lambda)$ symmetric design of order $n\equiv 2\pmod 4$, $v\equiv \pm 1\pmod 8$.
On a property of symmetric designs of order n = 2 (mod 4) / Buratti, Marco. - In: JOURNAL OF GEOMETRY. - ISSN 0047-2468. - 34(1989), pp. 30-35.
On a property of symmetric designs of order n = 2 (mod 4)
BURATTI, Marco
1989
Abstract
Using the Bruck-Ryser-Chowla theorem and the identity $v\lambda= k^2-n$ it is proved that, for any $(v,k,\lambda)$ symmetric design of order $n\equiv 2\pmod 4$, $v\equiv \pm 1\pmod 8$.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.