We introduce the concept of a 2-starter in a group G of odd order. We prove that any 2-factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton–Waterloo problems.

On sharply vertex-transitive 2-factorizations of the complete graph / Buratti, Marco; Rinaldi, G.. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - 111:(2005), pp. 245-256. [10.1016/j.jcta.2004.11.014]

On sharply vertex-transitive 2-factorizations of the complete graph

BURATTI, Marco;
2005

Abstract

We introduce the concept of a 2-starter in a group G of odd order. We prove that any 2-factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton–Waterloo problems.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact