We give an explicit solution to the existence problem for 1-rotational k-cycle systems of order v < 3k with k odd and v ≠ 2k + 1. We also exhibit a 2-rotational k-cycle system of order 2k + 1 for any odd k. Thus, for k odd and any admissible v < 3k there exists a 2-rotational k-cycle system of order v. This may also be viewed as an alternative proof that the obvious necessary conditions for the existence of odd cycle systems are also sufficient.

Rotational k-cycle systems of order v<3k; another proof of the existence of odd cycle systems

BURATTI, Marco
2003

Abstract

We give an explicit solution to the existence problem for 1-rotational k-cycle systems of order v < 3k with k odd and v ≠ 2k + 1. We also exhibit a 2-rotational k-cycle system of order 2k + 1 for any odd k. Thus, for k odd and any admissible v < 3k there exists a 2-rotational k-cycle system of order v. This may also be viewed as an alternative proof that the obvious necessary conditions for the existence of odd cycle systems are also sufficient.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654650
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact