One of the very first results about designs over finite fields, by S. Thomas, is the existence of a cyclic 2-(n, 3, 7)design over F2for every integer ncoprime with 6. Here, by means of difference methods, we reprove and improve a little bit this result showing that it is true, more generally, for every odd n. In this way, we also find the first infinite family of non-trivial cyclic group divisible designs over F2.

Designs over finite fields by difference methods / Buratti, Marco; Nakic, Anamari. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 57:(2019), pp. 128-138. [10.1016/j.ffa.2019.02.006]

Designs over finite fields by difference methods

Marco Buratti;
2019

Abstract

One of the very first results about designs over finite fields, by S. Thomas, is the existence of a cyclic 2-(n, 3, 7)design over F2for every integer ncoprime with 6. Here, by means of difference methods, we reprove and improve a little bit this result showing that it is true, more generally, for every odd n. In this way, we also find the first infinite family of non-trivial cyclic group divisible designs over F2.
2019
Design over a finite field; Difference family; Group divisible design over a finite field
01 Pubblicazione su rivista::01a Articolo in rivista
Designs over finite fields by difference methods / Buratti, Marco; Nakic, Anamari. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 57:(2019), pp. 128-138. [10.1016/j.ffa.2019.02.006]
File allegati a questo prodotto
File Dimensione Formato  
Buratti_Designs over_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 308.86 kB
Formato Adobe PDF
308.86 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact