Given a subgroup N of an additive group G, a (G,N,k,1) difference family (DF) is a set $\cal D$ of k-subsets of G such that $(d −d' | d, d' \in {\cal D}, d \neq d' , D \in {\cal D}) = G − N$. Generalizing a construction by Genma, Jimbo, and Mishima [4], we give a new condition for realizing a $(C_k \oplus G, C_k \times\{0\},k,1)-DF starting from a (G, {0}, k, 1)-DF. Among the consequences, new cyclic Steiner 2-designs are obtained.

From a (G,k,1) to a (C_k+G,k,1) difference family

BURATTI, Marco
1997

Abstract

Given a subgroup N of an additive group G, a (G,N,k,1) difference family (DF) is a set $\cal D$ of k-subsets of G such that $(d −d' | d, d' \in {\cal D}, d \neq d' , D \in {\cal D}) = G − N$. Generalizing a construction by Genma, Jimbo, and Mishima [4], we give a new condition for realizing a $(C_k \oplus G, C_k \times\{0\},k,1)-DF starting from a (G, {0}, k, 1)-DF. Among the consequences, new cyclic Steiner 2-designs are obtained.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654609
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact