Broadband Coherent Anti-Stokes Raman Scattering (B-CARS) is a powerful label-free nonlinear spectroscopy technique allowing one to measure the full vibrational spectrum of molecules and solids [1] - [2]. B-CARS spectra, however, suffer from the presence of a spurious signal, called non-resonant background (NRB), which interferes with the resonant one, distorting the line shapes and degrading the chemical information. While several numerical techniques [3] are available to remove this unwanted contribution and extract the resonant vibrational signal of interest, they all require the user's intervention and sensitively depend on the spectral shape of the NRB, which needs to be measured independently.

Removing Non-Resonant Background from CARS spectra via Deep Learning / Valensise, C. M.; Giuseppi, A.; Vernuccio, F.; De La Cadena, A.; Cerullo, G.; Polli, D.. - (2021), pp. 1-1. (Intervento presentato al convegno 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 tenutosi a Munich) [10.1109/CLEO/Europe-EQEC52157.2021.9592667].

Removing Non-Resonant Background from CARS spectra via Deep Learning

Valensise C. M.
;
Giuseppi A.;
2021

Abstract

Broadband Coherent Anti-Stokes Raman Scattering (B-CARS) is a powerful label-free nonlinear spectroscopy technique allowing one to measure the full vibrational spectrum of molecules and solids [1] - [2]. B-CARS spectra, however, suffer from the presence of a spurious signal, called non-resonant background (NRB), which interferes with the resonant one, distorting the line shapes and degrading the chemical information. While several numerical techniques [3] are available to remove this unwanted contribution and extract the resonant vibrational signal of interest, they all require the user's intervention and sensitively depend on the spectral shape of the NRB, which needs to be measured independently.
2021
2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021
Deep learning; Raman scattering; Raman spectroscopy; Signal processing
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Removing Non-Resonant Background from CARS spectra via Deep Learning / Valensise, C. M.; Giuseppi, A.; Vernuccio, F.; De La Cadena, A.; Cerullo, G.; Polli, D.. - (2021), pp. 1-1. (Intervento presentato al convegno 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 tenutosi a Munich) [10.1109/CLEO/Europe-EQEC52157.2021.9592667].
File allegati a questo prodotto
File Dimensione Formato  
Valensise_Removing_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact