Deep Reinforcement Learning (deep RL) is a branch of Machine Learning dealing with the solution of optimization problems, usually formalized as Markov Decision Processes [1]. At discrete temporal steps, an agent takes an action on the system receiving back a reward that depends on the state reached by the system. The goal of the agent is to determine an optimal policy, i.e. a map between states and actions, to maximise the future rewards, by directly experiencing and sampling the environment without any a-priori knowledge of the system. Among the various optimization algorithms, deep RL is particularly versatile thanks to the underlying neural networks [2] , a powerful universal approximator.

Deep reinforcement learning control of white-light continuum generation / Valensise, C. M.; Vernuccio, F.; Giuseppi, A.; Cerullo, G.; Polli, D.. - (2021), pp. 1-1. (Intervento presentato al convegno 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 tenutosi a Munich; Germany) [10.1109/CLEO/Europe-EQEC52157.2021.9592637].

Deep reinforcement learning control of white-light continuum generation

Valensise C. M.
;
Giuseppi A.
;
2021

Abstract

Deep Reinforcement Learning (deep RL) is a branch of Machine Learning dealing with the solution of optimization problems, usually formalized as Markov Decision Processes [1]. At discrete temporal steps, an agent takes an action on the system receiving back a reward that depends on the state reached by the system. The goal of the agent is to determine an optimal policy, i.e. a map between states and actions, to maximise the future rewards, by directly experiencing and sampling the environment without any a-priori knowledge of the system. Among the various optimization algorithms, deep RL is particularly versatile thanks to the underlying neural networks [2] , a powerful universal approximator.
2021
2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021
learning algorithms; markov processes; optimization; reinforcement learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Deep reinforcement learning control of white-light continuum generation / Valensise, C. M.; Vernuccio, F.; Giuseppi, A.; Cerullo, G.; Polli, D.. - (2021), pp. 1-1. (Intervento presentato al convegno 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 tenutosi a Munich; Germany) [10.1109/CLEO/Europe-EQEC52157.2021.9592637].
File allegati a questo prodotto
File Dimensione Formato  
Valensise_postprint_Deep_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 243.76 kB
Formato Adobe PDF
243.76 kB Adobe PDF   Contatta l'autore
Valensise_Deep_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 967.43 kB
Formato Adobe PDF
967.43 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1654500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact