The present investigation is concerned with the high-cycle axial fatigue behaviour of a third generation Al-steel butt weld made by Hybrid Metal Extrusion & Bonding (HYB). In this particular weld, metallurgical bonding is achieved by a combination of microscale mechanical interlocking and intermetallic compound (IMC) formation, where the IMC layer is in the sub-micrometre range (<1µm). During high-cycle axial fatigue testing this microstructure provides a high intrinsic resistance against interfacial cracking. In the as-welded condition, fatigue fracture typically initiates at the weld toe on the aluminium side of the joint due to the unfavourable effect of having a geometrical stress riser localised inside the soft heat-affected zone. Since the interfacial bond strength is not a limiting factor, the fatigue properties of the Al-steel HYB butt weld are seen to fully match those of corresponding Al-Al weldments produced by gas metal arc welding, laser beam welding and friction stir welding. © 2021 Elsevier Ltd
On the fatigue properties of a third generation aluminium-steel butt weld made by Hybrid Metal Extrusion & Bonding (HYB) / Sandnes, L.; Welo, T.; Grong, Ø.; Berto, Filippo. - In: INTERNATIONAL JOURNAL OF FATIGUE. - ISSN 0142-1123. - 155:(2022). [10.1016/j.ijfatigue.2021.106586]
On the fatigue properties of a third generation aluminium-steel butt weld made by Hybrid Metal Extrusion & Bonding (HYB)
Berto Filippo
2022
Abstract
The present investigation is concerned with the high-cycle axial fatigue behaviour of a third generation Al-steel butt weld made by Hybrid Metal Extrusion & Bonding (HYB). In this particular weld, metallurgical bonding is achieved by a combination of microscale mechanical interlocking and intermetallic compound (IMC) formation, where the IMC layer is in the sub-micrometre range (<1µm). During high-cycle axial fatigue testing this microstructure provides a high intrinsic resistance against interfacial cracking. In the as-welded condition, fatigue fracture typically initiates at the weld toe on the aluminium side of the joint due to the unfavourable effect of having a geometrical stress riser localised inside the soft heat-affected zone. Since the interfacial bond strength is not a limiting factor, the fatigue properties of the Al-steel HYB butt weld are seen to fully match those of corresponding Al-Al weldments produced by gas metal arc welding, laser beam welding and friction stir welding. © 2021 Elsevier LtdFile | Dimensione | Formato | |
---|---|---|---|
lise.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.63 MB
Formato
Adobe PDF
|
4.63 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.