Background Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53−/− mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. Methods We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. Results In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. Conclusions Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker.
Combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP / LA TORRE, Mattia; Merigliano, Chiara; Maccaroni, Klizia; Chojnowski, Alexandre; Ing Goh, Wah; Giubettini, Maria; Verni', Fiammetta; Capanni, Cristina; Rhodes, Daniela; Wright, Graham; Burke, Brian; Soddu, Silvia; Burla, Romina; Saggio, Isabella. - In: JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH. - ISSN 1756-9966. - 41:(2022). [10.1186/s13046-022-02480-5]
Combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP
Mattia La Torre;Chiara Merigliano;Klizia Maccaroni;Fiammetta Verni;Romina Burla
;Isabella Saggio
2022
Abstract
Background Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53−/− mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. Methods We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. Results In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. Conclusions Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker.File | Dimensione | Formato | |
---|---|---|---|
LaTorre_Combined_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
7.72 MB
Formato
Adobe PDF
|
7.72 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.