The use of non-local operators, defining Riemann–Liouville or Caputo derivatives, is a very useful tool to study problems involving non-conventional diffusion problems. The case of electric circuits, ruled by non-integer derivatives or capacitors with fractional dielectric permittivity, is a fairly natural frame of relevant applications. We use techniques, involving generalized exponential operators, to obtain suitable solutions for this type of problems and eventually discuss specific problems in applications.

About the use of generalized forms of derivatives in the study of electromagnetic problems / Antonini, G.; Dattoli, G.; Frezza, F.; Licciardi, S.; Loreto, F.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:16(2021), pp. 1-26. [10.3390/app11167505]

About the use of generalized forms of derivatives in the study of electromagnetic problems

Dattoli G.;Frezza F.;Licciardi S.;
2021

Abstract

The use of non-local operators, defining Riemann–Liouville or Caputo derivatives, is a very useful tool to study problems involving non-conventional diffusion problems. The case of electric circuits, ruled by non-integer derivatives or capacitors with fractional dielectric permittivity, is a fairly natural frame of relevant applications. We use techniques, involving generalized exponential operators, to obtain suitable solutions for this type of problems and eventually discuss specific problems in applications.
2021
Riemann–Liouville–Caputo; fractional derivatives; exponential evolution operators; electric circuits; fractional permittivity
01 Pubblicazione su rivista::01a Articolo in rivista
About the use of generalized forms of derivatives in the study of electromagnetic problems / Antonini, G.; Dattoli, G.; Frezza, F.; Licciardi, S.; Loreto, F.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:16(2021), pp. 1-26. [10.3390/app11167505]
File allegati a questo prodotto
File Dimensione Formato  
Antonini_About_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1653315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact