In this task, we identify a challenge that is reflective of linguistic and cognitive competencies that humans have when speaking and reasoning. Particularly, given the intuition that textual and visual information mutually inform each other for semantic reasoning, we formulate a Competence-based Question Answering challenge, designed to involve rich semantic annotation and aligned text-video objects. The task is to answer questions from a collection of cooking recipes and videos, where each question belongs to a “question family” reflecting a specific reasoning competence. The data and task result is publicly available.

SemEval-2022 Task 9: R2VQ – Competence-based Multimodal Question Answering / Tu, Jingxuan; Holderness, Eben; Maru, Marco; Conia, Simone; Rim, Kyeongmin; Lynch, Kelley; Brutti, Richard; Navigli, Roberto; Pustejovsky, James. - (2022), pp. 1244-1255. (Intervento presentato al convegno 16th International Workshop on Semantic Evaluation (SemEval-2022) tenutosi a Seattle; United States) [10.18653/v1/2022.semeval-1.176].

SemEval-2022 Task 9: R2VQ – Competence-based Multimodal Question Answering

Maru, Marco;Conia, Simone;Navigli, Roberto
;
Pustejovsky, James
2022

Abstract

In this task, we identify a challenge that is reflective of linguistic and cognitive competencies that humans have when speaking and reasoning. Particularly, given the intuition that textual and visual information mutually inform each other for semantic reasoning, we formulate a Competence-based Question Answering challenge, designed to involve rich semantic annotation and aligned text-video objects. The task is to answer questions from a collection of cooking recipes and videos, where each question belongs to a “question family” reflecting a specific reasoning competence. The data and task result is publicly available.
2022
16th International Workshop on Semantic Evaluation (SemEval-2022)
question answering; natural language processing; computer vision; semantic role labeling; named entity recognition
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
SemEval-2022 Task 9: R2VQ – Competence-based Multimodal Question Answering / Tu, Jingxuan; Holderness, Eben; Maru, Marco; Conia, Simone; Rim, Kyeongmin; Lynch, Kelley; Brutti, Richard; Navigli, Roberto; Pustejovsky, James. - (2022), pp. 1244-1255. (Intervento presentato al convegno 16th International Workshop on Semantic Evaluation (SemEval-2022) tenutosi a Seattle; United States) [10.18653/v1/2022.semeval-1.176].
File allegati a questo prodotto
File Dimensione Formato  
Tu_SemEval_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1653273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact