The aim of this study was to investigate if the declared benefits associated with superfoods are related to a specific molecular composition. For this purpose, untargeted metabolomics and molecular networking were used to obtain an overview of all features, focusing on compounds with anti-inflammatory, antioxidant or antimicrobial properties. 565 plant-based food samples were analyzed using UHPLC-HRMS and advanced data analysis tools. The molecular networking of the whole dataset allowed identification of a greater diversity of molecules, in particular, prenol lipids, isoflavonoids and isoquinolines in superfoods, when compared with non-superfood species belonging to the same botanical family. Furthermore, in silico tools were used to expand our chemical knowledge of compounds observed in superfood samples.
A UHPLC-HRMS based metabolomics and chemoinformatics approach to chemically distinguish ‘super foods’ from a variety of plant-based foods / Di Ottavio, F.; Gauglitz, J. M.; Ernst, M.; Panitchpakdi, M. W.; Fanti, F.; Compagnone, D.; Dorrestein, P. C.; Sergi, M.. - In: FOOD CHEMISTRY. - ISSN 0308-8146. - 313:(2020), pp. 1-10. [10.1016/j.foodchem.2019.126071]
A UHPLC-HRMS based metabolomics and chemoinformatics approach to chemically distinguish ‘super foods’ from a variety of plant-based foods
Di Ottavio F.;Compagnone D.;Sergi M.
2020
Abstract
The aim of this study was to investigate if the declared benefits associated with superfoods are related to a specific molecular composition. For this purpose, untargeted metabolomics and molecular networking were used to obtain an overview of all features, focusing on compounds with anti-inflammatory, antioxidant or antimicrobial properties. 565 plant-based food samples were analyzed using UHPLC-HRMS and advanced data analysis tools. The molecular networking of the whole dataset allowed identification of a greater diversity of molecules, in particular, prenol lipids, isoflavonoids and isoquinolines in superfoods, when compared with non-superfood species belonging to the same botanical family. Furthermore, in silico tools were used to expand our chemical knowledge of compounds observed in superfood samples.File | Dimensione | Formato | |
---|---|---|---|
DiOttavio_A-UHPLC-HRMS_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.