Oxysterols have long been considered as simple by-products of cholesterol metabolism, but they are now fully designed as bioactive lipids that exert their multiple effects through their binding to several receptors, representing endogenous mediators potentially involved in several metabolic diseases. There is also a growing concern that metabolic disorders may be linked with exposure to endocrine-disrupting chemicals (EDCs). To date, there are no studies aimed to link EDCs exposure to oxysterols perturbation—neither in vivo nor in vitro studies. The present research aimed to evaluate the differences in oxysterols levels following exposure to two metabolism disrupting chemicals (propylparaben (PP) and triclocarban (TCC)) in the zebrafish model using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Following exposure to PP and TCC, there were no significant changes in total and individual oxysterols compared with the control group; however, some interesting differences were noticed: 24-OH was detected only in treated zebrafish embryos, as well as the concentrations of 27-OH, which followed a different distribution, with an increase in TCC treated embryos and a reduction in zebrafish embryos exposed to PP at 24 h post-fertilization (hpf). The results of the present study prompt the hypothesis that EDCs can modulate the oxysterol profile in the zebrafish model and that these variations could be potentially involved in the toxicity mechanism of these emerging contaminants.

Oxysterols Profile in Zebrafish Embryos Exposed to Triclocarban and Propylparaben—A Preliminary Study / Merola, Carmine; Vremere, Anton; Fanti, Federico; Iannetta, Annamaria; Caioni, Giulia; Sergi, Manuel; Compagnone, Dario; Lorenzetti, Stefano; Perugini, Monia; Amorena, Michele. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - 19:3(2022), pp. 1-11. [10.3390/ijerph19031264]

Oxysterols Profile in Zebrafish Embryos Exposed to Triclocarban and Propylparaben—A Preliminary Study

Sergi, Manuel;Compagnone, Dario;
2022

Abstract

Oxysterols have long been considered as simple by-products of cholesterol metabolism, but they are now fully designed as bioactive lipids that exert their multiple effects through their binding to several receptors, representing endogenous mediators potentially involved in several metabolic diseases. There is also a growing concern that metabolic disorders may be linked with exposure to endocrine-disrupting chemicals (EDCs). To date, there are no studies aimed to link EDCs exposure to oxysterols perturbation—neither in vivo nor in vitro studies. The present research aimed to evaluate the differences in oxysterols levels following exposure to two metabolism disrupting chemicals (propylparaben (PP) and triclocarban (TCC)) in the zebrafish model using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Following exposure to PP and TCC, there were no significant changes in total and individual oxysterols compared with the control group; however, some interesting differences were noticed: 24-OH was detected only in treated zebrafish embryos, as well as the concentrations of 27-OH, which followed a different distribution, with an increase in TCC treated embryos and a reduction in zebrafish embryos exposed to PP at 24 h post-fertilization (hpf). The results of the present study prompt the hypothesis that EDCs can modulate the oxysterol profile in the zebrafish model and that these variations could be potentially involved in the toxicity mechanism of these emerging contaminants.
2022
oxysterols; propylparaben; toxicity; triclocarban; zebrafish embryos
01 Pubblicazione su rivista::01a Articolo in rivista
Oxysterols Profile in Zebrafish Embryos Exposed to Triclocarban and Propylparaben—A Preliminary Study / Merola, Carmine; Vremere, Anton; Fanti, Federico; Iannetta, Annamaria; Caioni, Giulia; Sergi, Manuel; Compagnone, Dario; Lorenzetti, Stefano; Perugini, Monia; Amorena, Michele. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - 19:3(2022), pp. 1-11. [10.3390/ijerph19031264]
File allegati a questo prodotto
File Dimensione Formato  
Merola_Oxysterols_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1653249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact