Anigopreissin A belongs to stilbene di- and oligomeric forms containing a benzofuran ring system whose biological activity is unknown. Recently, a completely protected Anigopreissin A - Permethylated Anigopreissin A - has been synthesized. We use MTT bioassay to assess Permethylated Anigopreissin A cytotoxicity in different human cell lines. Furthermore, fluorescence microscopy, caspase activity, real-time PCR and Western-blot methods are employed to evaluate apoptotic cell death pathway in liver cancer cells. Permethylated Anigopreissin A kills different types of human cancer cells but does not affect non-tumorigenic cells. The Permethylated Anigopreissin A concentration that causes 50% inhibition of liver tumor cells is 0.24μM. Hepatoma cells treated with Permethylated Anigopreissin A arrest their cell cycle in G1 phase. We also demonstrate that Permethylated Anigopreissin A-triggered cell death occurs by apoptosis. Decrease of the BCL2 expression levels, loss of the mitochondrial membrane potential, release of cytochrome c and increase of caspase 9 activity highlight a key role for mitochondria in Permethylated Anigopreissin A-induced apoptosis. Our study shows that Permethylated Anigopreissin A kills liver cancer cells through intrinsic apoptotic pathway.
Permethylated Anigopreissin A inhibits human hepatoma cell proliferation by mitochondria-induced apoptosis / Convertini, Paolo; Tramutola, Francesco; Iacobazzi, Vito; Lupattelli, Paolo; Chiummiento, Lucia; Infantino, Vittoria. - In: CHEMICO-BIOLOGICAL INTERACTIONS. - ISSN 0009-2797. - 237:(2015), pp. 1-8. [10.1016/j.cbi.2015.05.005]
Permethylated Anigopreissin A inhibits human hepatoma cell proliferation by mitochondria-induced apoptosis
LUPATTELLI, Paolo;
2015
Abstract
Anigopreissin A belongs to stilbene di- and oligomeric forms containing a benzofuran ring system whose biological activity is unknown. Recently, a completely protected Anigopreissin A - Permethylated Anigopreissin A - has been synthesized. We use MTT bioassay to assess Permethylated Anigopreissin A cytotoxicity in different human cell lines. Furthermore, fluorescence microscopy, caspase activity, real-time PCR and Western-blot methods are employed to evaluate apoptotic cell death pathway in liver cancer cells. Permethylated Anigopreissin A kills different types of human cancer cells but does not affect non-tumorigenic cells. The Permethylated Anigopreissin A concentration that causes 50% inhibition of liver tumor cells is 0.24μM. Hepatoma cells treated with Permethylated Anigopreissin A arrest their cell cycle in G1 phase. We also demonstrate that Permethylated Anigopreissin A-triggered cell death occurs by apoptosis. Decrease of the BCL2 expression levels, loss of the mitochondrial membrane potential, release of cytochrome c and increase of caspase 9 activity highlight a key role for mitochondria in Permethylated Anigopreissin A-induced apoptosis. Our study shows that Permethylated Anigopreissin A kills liver cancer cells through intrinsic apoptotic pathway.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.