Physical mathematical models, conceived for distinctly didactic purposes, became the main protagonists in teaching mathematics and geometry between the end of the nineteenth century and the first half of the twentieth century. Long since abandoned in storerooms or the increasingly small display cabinets of mathematic halls, in recent years, they have been the topic of a movement of rediscovery. This study proposes the restoration of collections of mathematical models through rapid prototyping and the integration of explanatory content in Augmented Reality directly on the physical models. The main objective of the research aims at defining a methodology for the renewal of the teaching of geometry, proposing a multimedia didactic theater in which the physical model is once more the protagonist. Initially, an in-depth study is proposed on the mathematical model types representing polyhedra, which display characteristics that derive from the ancient fascination with the perfection of these geometric shapes, selecting for first experimentation the unique collection of Max Brückner’s paper polyhedra.

I modelli fisici matematici, concepiti con finalità spiccatamente didattiche, divennero i principali protagonisti nell’insegnamento della geometria tra la fine dell’Ottocento e la prima metà del Novecento. Dimenticati per un lungo periodo nei magazzini o nelle vetrine sempre più ristrette dei gabinetti di matematica, negli ultimi anni sono oggetto di un movimento di riscoperta. In questo studio si propone il ripristino delle collezioni di modelli matematici tramite la prototipazione rapida e l’integrazione direttamente sui modelli fisici di contenuti esplicativi in Realtà Aumentata. L’obiettivo principale della ricerca mira alla definizione di una metodologia per il rinnovamento dell’insegnamento della geometria, proponendo un teatro didattico multimediale in cui il modello fisico torna ad essere protagonista. Si propone inizialmente un approfondimento sulla tipologia di modelli matematici che rappresentano i poliedri, i quali presentano alcune peculiarità che derivano dall’atavica fascinazione per la perfezione di queste forme geometriche, scegliendo per una prima sperimentazione la particolare collezione di poliedri di carta di Max Brückner.

The Restoration of Mathematical Cabinets Between Rapid Prototyping and Augmented Reality. Max Brückner’s Collection of Polyhedra / Ceracchi, Michela. - 146:(2022), pp. 1040-1051. (Intervento presentato al convegno ICGG 2022 - The 20th International Conference on Geometry and Graphics tenutosi a São Paulo, Brazil (Online)) [10.1007/978-3-031-13588-0_91].

The Restoration of Mathematical Cabinets Between Rapid Prototyping and Augmented Reality. Max Brückner’s Collection of Polyhedra

Michela Ceracchi
2022

Abstract

Physical mathematical models, conceived for distinctly didactic purposes, became the main protagonists in teaching mathematics and geometry between the end of the nineteenth century and the first half of the twentieth century. Long since abandoned in storerooms or the increasingly small display cabinets of mathematic halls, in recent years, they have been the topic of a movement of rediscovery. This study proposes the restoration of collections of mathematical models through rapid prototyping and the integration of explanatory content in Augmented Reality directly on the physical models. The main objective of the research aims at defining a methodology for the renewal of the teaching of geometry, proposing a multimedia didactic theater in which the physical model is once more the protagonist. Initially, an in-depth study is proposed on the mathematical model types representing polyhedra, which display characteristics that derive from the ancient fascination with the perfection of these geometric shapes, selecting for first experimentation the unique collection of Max Brückner’s paper polyhedra.
2022
ICGG 2022 - The 20th International Conference on Geometry and Graphics
I modelli fisici matematici, concepiti con finalità spiccatamente didattiche, divennero i principali protagonisti nell’insegnamento della geometria tra la fine dell’Ottocento e la prima metà del Novecento. Dimenticati per un lungo periodo nei magazzini o nelle vetrine sempre più ristrette dei gabinetti di matematica, negli ultimi anni sono oggetto di un movimento di riscoperta. In questo studio si propone il ripristino delle collezioni di modelli matematici tramite la prototipazione rapida e l’integrazione direttamente sui modelli fisici di contenuti esplicativi in Realtà Aumentata. L’obiettivo principale della ricerca mira alla definizione di una metodologia per il rinnovamento dell’insegnamento della geometria, proponendo un teatro didattico multimediale in cui il modello fisico torna ad essere protagonista. Si propone inizialmente un approfondimento sulla tipologia di modelli matematici che rappresentano i poliedri, i quali presentano alcune peculiarità che derivano dall’atavica fascinazione per la perfezione di queste forme geometriche, scegliendo per una prima sperimentazione la particolare collezione di poliedri di carta di Max Brückner.
Physical mathematical models; Rapid prototyping; Augmented Reality; Modelli fisici matematici; Prototipazione rapida; Realtà Aumentata
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
The Restoration of Mathematical Cabinets Between Rapid Prototyping and Augmented Reality. Max Brückner’s Collection of Polyhedra / Ceracchi, Michela. - 146:(2022), pp. 1040-1051. (Intervento presentato al convegno ICGG 2022 - The 20th International Conference on Geometry and Graphics tenutosi a São Paulo, Brazil (Online)) [10.1007/978-3-031-13588-0_91].
File allegati a questo prodotto
File Dimensione Formato  
Ceracchi_The Restoration of Mathematical Cabinets_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1652950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact