We present a method for cloud-removal from satellite images using axial transformer networks. The method considers a set of multitemporal images in a given region of interest together with the corresponding cloud masks, and delivers a cloud-free image for a specific day of the year. We propose the combination of an encoder-decoder model employing axial attention layers for the estimation of the low-resolution cloud-free image, together with a fully parallel upsampler that reconstructs the image at full resolution. The method is compared with various baselines and state-of-the-art methods on two Sentinel-2 datasets, showing significant improvements across multiple standard metrics used for image quality assessment.

CLOUDTRAN: CLOUD REMOVAL FROM MULTITEMPORAL SATELLITE IMAGES USING AXIAL TRANSFORMER NETWORKS / Christopoulos, D.; Ntouskos, V.; Karantzalos, K.. - 43:2-2022(2022), pp. 1125-1132. (Intervento presentato al convegno 2022 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission II tenutosi a Nice, France) [10.5194/isprs-archives-XLIII-B2-2022-1125-2022].

CLOUDTRAN: CLOUD REMOVAL FROM MULTITEMPORAL SATELLITE IMAGES USING AXIAL TRANSFORMER NETWORKS

Ntouskos V.;
2022

Abstract

We present a method for cloud-removal from satellite images using axial transformer networks. The method considers a set of multitemporal images in a given region of interest together with the corresponding cloud masks, and delivers a cloud-free image for a specific day of the year. We propose the combination of an encoder-decoder model employing axial attention layers for the estimation of the low-resolution cloud-free image, together with a fully parallel upsampler that reconstructs the image at full resolution. The method is compared with various baselines and state-of-the-art methods on two Sentinel-2 datasets, showing significant improvements across multiple standard metrics used for image quality assessment.
2022
2022 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission II
autoregressive models; cloud detection; cloud-free; reconstruction; reflectance; sentinel-2; time series
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
CLOUDTRAN: CLOUD REMOVAL FROM MULTITEMPORAL SATELLITE IMAGES USING AXIAL TRANSFORMER NETWORKS / Christopoulos, D.; Ntouskos, V.; Karantzalos, K.. - 43:2-2022(2022), pp. 1125-1132. (Intervento presentato al convegno 2022 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Commission II tenutosi a Nice, France) [10.5194/isprs-archives-XLIII-B2-2022-1125-2022].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1652454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact