Herein we report the fabrication and electrochemical characterization of a novel type of supercapacitor composed of laser-induced graphene (LIG) electrodes, achieved by the laser-writing of polyimide foils, and 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. This combination allows the development of a flexible microsupercapacitor suitable for harsh environment application. The influence of several parameters is evaluated with the aim of maximizing the performance of the flexible pouch-bag devices, such as the laser-writing conditions, type of electrode layout and amount of nitrogen-doping. Among them, the laser writing conditions are found to strongly influence the areal capacitance allowing to achieve about 4 mF cm−2, as measured from the galvanostatic charge-discharge measurement at 10 µA cm−2, with a maximum operating potential range of 3 V at 25 °C. In order to probe the potential application of such device, i) flexible pouch architecture and ii) high temperature measurements (considering harsh environment field) are investigated. This type of flexible device exhibits energy and power density as high as 4.5 µWh cm−2 and 90.5 µW cm−2, respectively, high cycling stability as well as acceptable coulombic efficiency above 97% demonstrating good stability even at high bending condition (1.25 cm of bending radius). The electrochemical measurements increasing temperature up to 100 °C reveal a 300% of rise in capacitance and 43% of increment in energy density at de-rated voltage. The obtained energy storage performance are comparable to the best data ever reported for a microsupercapacitor for high temperature application. Moreover, a de-rated voltage analysis (DVA) is proposed as a safe procedure to characterize an energy storage device in an extended temperature range without compromising the system performances.

Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis / Zaccagnini, P.; di Giovanni, D.; Gomez, M. G.; Passerini, S.; Varzi, A.; Lamberti, A.. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 357:(2020). [10.1016/j.electacta.2020.136838]

Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis

Passerini S.;
2020

Abstract

Herein we report the fabrication and electrochemical characterization of a novel type of supercapacitor composed of laser-induced graphene (LIG) electrodes, achieved by the laser-writing of polyimide foils, and 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. This combination allows the development of a flexible microsupercapacitor suitable for harsh environment application. The influence of several parameters is evaluated with the aim of maximizing the performance of the flexible pouch-bag devices, such as the laser-writing conditions, type of electrode layout and amount of nitrogen-doping. Among them, the laser writing conditions are found to strongly influence the areal capacitance allowing to achieve about 4 mF cm−2, as measured from the galvanostatic charge-discharge measurement at 10 µA cm−2, with a maximum operating potential range of 3 V at 25 °C. In order to probe the potential application of such device, i) flexible pouch architecture and ii) high temperature measurements (considering harsh environment field) are investigated. This type of flexible device exhibits energy and power density as high as 4.5 µWh cm−2 and 90.5 µW cm−2, respectively, high cycling stability as well as acceptable coulombic efficiency above 97% demonstrating good stability even at high bending condition (1.25 cm of bending radius). The electrochemical measurements increasing temperature up to 100 °C reveal a 300% of rise in capacitance and 43% of increment in energy density at de-rated voltage. The obtained energy storage performance are comparable to the best data ever reported for a microsupercapacitor for high temperature application. Moreover, a de-rated voltage analysis (DVA) is proposed as a safe procedure to characterize an energy storage device in an extended temperature range without compromising the system performances.
2020
flexible; high temperature; Ionic liquid; Laser-induced graphene; micro-supercapacitor
01 Pubblicazione su rivista::01a Articolo in rivista
Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis / Zaccagnini, P.; di Giovanni, D.; Gomez, M. G.; Passerini, S.; Varzi, A.; Lamberti, A.. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 357:(2020). [10.1016/j.electacta.2020.136838]
File allegati a questo prodotto
File Dimensione Formato  
Zaccagnini_Flexible_2020.pdf

solo gestori archivio

Note: full paper
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1651568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
social impact