Iron sulfides are promising materials for lithium- and sodium-ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide-carbon composite, synthesized from a Fe-based metal–organic framework (Fe-MIL-88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (<10 nm in diameter) embedded in a heteroatom (N, S, and O)-doped carbonaceous framework (Fe7S8@HD-C), and is obtained via a simple and efficient one-step sulfidation process. The Fe7S8@HD-C composite, investigated in diethylene glycol dimethyl ether-based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X-ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long-term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long-term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates.
Metal–organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with Lithium and Sodium storage capability / Li, H.; Ma, Y.; Zhang, H.; Diemant, T.; Behm, R. J.; Varzi, A.; Passerini, S.. - In: SMALL METHODS. - ISSN 2366-9608. - 4:12(2020). [10.1002/smtd.202000637]
Metal–organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with Lithium and Sodium storage capability
Passerini S.
2020
Abstract
Iron sulfides are promising materials for lithium- and sodium-ion batteries owing to their high theoretical capacity and widespread abundance. Herein, the performance of an iron sulfide-carbon composite, synthesized from a Fe-based metal–organic framework (Fe-MIL-88NH2) is reported. The material is composed of ultrafine Fe7S8 nanoparticles (<10 nm in diameter) embedded in a heteroatom (N, S, and O)-doped carbonaceous framework (Fe7S8@HD-C), and is obtained via a simple and efficient one-step sulfidation process. The Fe7S8@HD-C composite, investigated in diethylene glycol dimethyl ether-based electrolytes as anode material for lithium and sodium batteries, shows high reversible capacities (930 mAh g−1 for lithium and 675 mAh g−1 for sodium at 0.1 A g−1). In situ X-ray diffraction reveals an insertion reaction to occur in the first lithiation and sodiation steps, followed by conversion reactions. The composite electrodes show rather promising long-term cycling stability and rate capability for sodium storage in glyme electrolyte, while an improved rate capacity and long-term cycling stability (800 mAh g−1 after 300 cycles at 1 A g−1) for lithium can be achieved using conventional carbonates.File | Dimensione | Formato | |
---|---|---|---|
Li_Metal_2020.pdf
accesso aperto
Note: full paper
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.