We study relations between the quadraticity of the Kuranishi family of a coherent sheaf on a complex projective scheme and the formality of the DG-Lie algebra of its derived endomorphisms. In particular, we prove that for a polystable coherent sheaf of a smooth complex projective surface the DG-Lie algebra of derived endomorphisms is forif if
DEFORMATIONS OF POLYSTABLE SHEAVES ON SURFACES: QUADRATICITY IMPLIES FORMALITY / Bandiera, R; Manetti, M; Meazzini, F. - In: MOSCOW MATHEMATICAL JOURNAL. - ISSN 1609-3321. - 22:2(2022), pp. 239-263. [10.17323/1609-4514-2022-22-2-239-263]
DEFORMATIONS OF POLYSTABLE SHEAVES ON SURFACES: QUADRATICITY IMPLIES FORMALITY
Bandiera, R;Manetti, M
;Meazzini, F
2022
Abstract
We study relations between the quadraticity of the Kuranishi family of a coherent sheaf on a complex projective scheme and the formality of the DG-Lie algebra of its derived endomorphisms. In particular, we prove that for a polystable coherent sheaf of a smooth complex projective surface the DG-Lie algebra of derived endomorphisms is forif ifFile allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Bandiera_Deformations_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
554.83 kB
Formato
Adobe PDF
|
554.83 kB | Adobe PDF | Contatta l'autore |
Bandiera_postprint_Deformations_2022.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
410.74 kB
Formato
Adobe PDF
|
410.74 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.