In this paper we propose a new derivative-free algorithm for linearly constrained finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivativefree algorithms can locate only points which satisfy weak necessary optimality conditions. In this work we define a new derivative-free algorithm which is globally convergent toward standard stationary points of the finite minimax problem. To this end, we convert the original problem into a smooth one by using a smoothing technique based on the exponential penalty function of Kort and Bertsekas. This technique depends on a smoothing parameter which controls the approximation to the finite minimax problem. The proposed method is based on a sampling of the smooth function along a suitable search direction and on a particular updating rule for the smoothing parameter that depends on the sampling stepsize. Numerical results on a set of standard minimax test problems are reported.

A derivative-free algorithm for linearly constrained finite minimax problems / Liuzzi, Giampaolo; Lucidi, Stefano; Sciandrone, M.. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - 16:4(2006), pp. 1054-1075. [10.1137/040615821]

A derivative-free algorithm for linearly constrained finite minimax problems

LIUZZI, Giampaolo;LUCIDI, Stefano;M. Sciandrone
2006

Abstract

In this paper we propose a new derivative-free algorithm for linearly constrained finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivativefree algorithms can locate only points which satisfy weak necessary optimality conditions. In this work we define a new derivative-free algorithm which is globally convergent toward standard stationary points of the finite minimax problem. To this end, we convert the original problem into a smooth one by using a smoothing technique based on the exponential penalty function of Kort and Bertsekas. This technique depends on a smoothing parameter which controls the approximation to the finite minimax problem. The proposed method is based on a sampling of the smooth function along a suitable search direction and on a particular updating rule for the smoothing parameter that depends on the sampling stepsize. Numerical results on a set of standard minimax test problems are reported.
2006
derivative-free optimization; linearly constrained finite minimax problems; nonsmooth; nonsmooth optimization
01 Pubblicazione su rivista::01a Articolo in rivista
A derivative-free algorithm for linearly constrained finite minimax problems / Liuzzi, Giampaolo; Lucidi, Stefano; Sciandrone, M.. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - 16:4(2006), pp. 1054-1075. [10.1137/040615821]
File allegati a questo prodotto
File Dimensione Formato  
VE_2006_11573-16467.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 203.91 kB
Formato Adobe PDF
203.91 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/16467
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 35
social impact