In recent years, the availability and the consequent consumption of New Psychoactive Substances (NPS) have proliferated at an unprecedented rate, posing a significant risk to the public health and challenging the law enforcement efforts to tackle the black market. In particular, large availability on Internet and unmonitored shipping have facilitated the diffusion of NPS on national territories. In this scenario, the forensic activity based on the process of drug detection, including investigation, seizure, recognition and analytical identification is crucial to get insights into the drug black market transformation. In this study, we describe the results obtained from the analysis of hundreds of packages seized during the months of year 2020, and suspected to contain NPS because not reacting with standard field test kits. We focused on the analysis by GC-MS and HPLC-HRMS, and NPS in particular, trying to underline the most common molecules present on the Italian territory during the COVID-19 pandemic. NPS were identified in 92.6% of the samples. The most prevalent compounds were synthetic cathinones, and 3-MMC in particular, which alone accounted for 18.6% of the total cases. Other prevalent molecules were 5F-MDMB-PICA, 2-FDCK, 1cp-LSD and 1P-LSD. Fentanyl was never detected. The information obtained from drug seizures is crucial to publish national alerts, which are in turn important to assist the legislative effort to ban new compounds and the update of toxicological and analytical methods.

Seizures of New Psychoactive Substances on the Italian territory during the COVID-19 pandemic / Vincenti, F.; Gregori, A.; Flammini, M.; Di Rosa, F.; Salomone, A.. - In: FORENSIC SCIENCE INTERNATIONAL. - ISSN 0379-0738. - 326:(2021), p. 110904. [10.1016/j.forsciint.2021.110904]

Seizures of New Psychoactive Substances on the Italian territory during the COVID-19 pandemic

Vincenti F.
Primo
;
2021

Abstract

In recent years, the availability and the consequent consumption of New Psychoactive Substances (NPS) have proliferated at an unprecedented rate, posing a significant risk to the public health and challenging the law enforcement efforts to tackle the black market. In particular, large availability on Internet and unmonitored shipping have facilitated the diffusion of NPS on national territories. In this scenario, the forensic activity based on the process of drug detection, including investigation, seizure, recognition and analytical identification is crucial to get insights into the drug black market transformation. In this study, we describe the results obtained from the analysis of hundreds of packages seized during the months of year 2020, and suspected to contain NPS because not reacting with standard field test kits. We focused on the analysis by GC-MS and HPLC-HRMS, and NPS in particular, trying to underline the most common molecules present on the Italian territory during the COVID-19 pandemic. NPS were identified in 92.6% of the samples. The most prevalent compounds were synthetic cathinones, and 3-MMC in particular, which alone accounted for 18.6% of the total cases. Other prevalent molecules were 5F-MDMB-PICA, 2-FDCK, 1cp-LSD and 1P-LSD. Fentanyl was never detected. The information obtained from drug seizures is crucial to publish national alerts, which are in turn important to assist the legislative effort to ban new compounds and the update of toxicological and analytical methods.
2021
Black market; Cathinones; New psychoactive substances; NPS; Seizure
01 Pubblicazione su rivista::01a Articolo in rivista
Seizures of New Psychoactive Substances on the Italian territory during the COVID-19 pandemic / Vincenti, F.; Gregori, A.; Flammini, M.; Di Rosa, F.; Salomone, A.. - In: FORENSIC SCIENCE INTERNATIONAL. - ISSN 0379-0738. - 326:(2021), p. 110904. [10.1016/j.forsciint.2021.110904]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1646451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact