Given Omega subset of R(n) open, connected and with Lipschitz boundary, and s is an element of (0, 1), we consider the functional J(s)(E, Omega) = integral(E boolean AND Omega)integral(Ec boolean AND Omega) dxdy/vertical bar x - y vertical bar(n+s) + integral(E boolean AND Omega)integral(Ec boolean AND Omega c) dxdy/vertical bar x - y vertical bar(n+s) + integral(E boolean AND Omega c)integral(Ec boolean AND Omega) dxdy/vertical bar x - y vertical bar(n+s), where E subset of R(n) is an arbitrary measurable set. We prove that the functionals (1 - s)J(s)(., Omega) are equi- coercive in L(loc)(1)(Omega) as s up arrow 1 and that Gamma - lim(s up arrow 1)(1 - s)J(s) (E, Omega) = omega(n-1)P(E, Omega), for every E subset of R(n) measurable, where P(E, Omega) denotes the perimeter of E in Omega in the sense of De Giorgi. We also prove that as s up arrow 1 limit points of local minimizers of (1 - s)J(s)(., Omega) are local minimizers of P(., Omega).

Gamma-convergence of nonlocal perimeter functionals / Ambrosio, Luigi; de Philippis, Guido; Martinazzi, Luca. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - 134:3(2011), pp. 377-403. [10.1007/s00229-010-0399-4]

Gamma-convergence of nonlocal perimeter functionals

Martinazzi, Luca
2011

Abstract

Given Omega subset of R(n) open, connected and with Lipschitz boundary, and s is an element of (0, 1), we consider the functional J(s)(E, Omega) = integral(E boolean AND Omega)integral(Ec boolean AND Omega) dxdy/vertical bar x - y vertical bar(n+s) + integral(E boolean AND Omega)integral(Ec boolean AND Omega c) dxdy/vertical bar x - y vertical bar(n+s) + integral(E boolean AND Omega c)integral(Ec boolean AND Omega) dxdy/vertical bar x - y vertical bar(n+s), where E subset of R(n) is an arbitrary measurable set. We prove that the functionals (1 - s)J(s)(., Omega) are equi- coercive in L(loc)(1)(Omega) as s up arrow 1 and that Gamma - lim(s up arrow 1)(1 - s)J(s) (E, Omega) = omega(n-1)P(E, Omega), for every E subset of R(n) measurable, where P(E, Omega) denotes the perimeter of E in Omega in the sense of De Giorgi. We also prove that as s up arrow 1 limit points of local minimizers of (1 - s)J(s)(., Omega) are local minimizers of P(., Omega).
2011
Mathematics (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Gamma-convergence of nonlocal perimeter functionals / Ambrosio, Luigi; de Philippis, Guido; Martinazzi, Luca. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - 134:3(2011), pp. 377-403. [10.1007/s00229-010-0399-4]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1646174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 139
social impact