We consider the Ising model on the hexagonal lattice evolving according to Metropolis dynamics. We study its metastable behavior in the limit of vanishing temperature when the system is immersed in a small external magnetic field. We determine the asymptotic properties of the transition time from the metastable to the stable state up to a multiplicative factor and study the mixing time and the spectral gap of the Markov process. We give a geometrical description of the critical configurations and show how not only their size but their shape varies depending on the thermodynamical parameters. Finally we provide some results concerning polyiamonds of maximal area and minimal perimeter.

Metastability for the Ising model on the hexagonal lattice / Apollonio, Valentina; Jacquier, Vanessa; Nardi, Francesca Romana; Troiani, Alessio. - In: ELECTRONIC JOURNAL OF PROBABILITY. - ISSN 1083-6489. - 27:none(2022). [10.1214/22-EJP763]

Metastability for the Ising model on the hexagonal lattice

Nardi, Francesca Romana;Troiani, Alessio
2022

Abstract

We consider the Ising model on the hexagonal lattice evolving according to Metropolis dynamics. We study its metastable behavior in the limit of vanishing temperature when the system is immersed in a small external magnetic field. We determine the asymptotic properties of the transition time from the metastable to the stable state up to a multiplicative factor and study the mixing time and the spectral gap of the Markov process. We give a geometrical description of the critical configurations and show how not only their size but their shape varies depending on the thermodynamical parameters. Finally we provide some results concerning polyiamonds of maximal area and minimal perimeter.
2022
Ising model; metastability; low temperature stochastic dynamics; large deviations; potential theory; hexagonal lattice; polyiamonds
01 Pubblicazione su rivista::01a Articolo in rivista
Metastability for the Ising model on the hexagonal lattice / Apollonio, Valentina; Jacquier, Vanessa; Nardi, Francesca Romana; Troiani, Alessio. - In: ELECTRONIC JOURNAL OF PROBABILITY. - ISSN 1083-6489. - 27:none(2022). [10.1214/22-EJP763]
File allegati a questo prodotto
File Dimensione Formato  
Apollonio_Metastability_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 609.04 kB
Formato Adobe PDF
609.04 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1645176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact