In this paper, we present SyntNN as a way to include traditional syntactic models in multilayer neural networks used in the task of Semeval Task 2 of emoji prediction (Barbieri et al., 2018). The model builds on the distributed tree embedder also known as distributed tree kernel (Zanzotto and Dell'Arciprete, 2012). Initial results are extremely encouraging but additional analysis is needed to overcome the problem of overfitting.

SyntNN at SemEval-2018 Task 2: Is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons / Santilli, A.; Zanzotto, F. M.. - (2018), pp. 477-481. (Intervento presentato al convegno NAACL HLT 2018 - International Workshop on Semantic Evaluation, SemEval 2018 - Proceedings of the 12th Workshop tenutosi a New Orleans; USA).

SyntNN at SemEval-2018 Task 2: Is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons

Santilli A.
Primo
;
2018

Abstract

In this paper, we present SyntNN as a way to include traditional syntactic models in multilayer neural networks used in the task of Semeval Task 2 of emoji prediction (Barbieri et al., 2018). The model builds on the distributed tree embedder also known as distributed tree kernel (Zanzotto and Dell'Arciprete, 2012). Initial results are extremely encouraging but additional analysis is needed to overcome the problem of overfitting.
2018
NAACL HLT 2018 - International Workshop on Semantic Evaluation, SemEval 2018 - Proceedings of the 12th Workshop
Natural Language Processing; sentiment analysis; syntax
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
SyntNN at SemEval-2018 Task 2: Is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons / Santilli, A.; Zanzotto, F. M.. - (2018), pp. 477-481. (Intervento presentato al convegno NAACL HLT 2018 - International Workshop on Semantic Evaluation, SemEval 2018 - Proceedings of the 12th Workshop tenutosi a New Orleans; USA).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1643152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact