This paper describes the UNITOR system that participated to the Irony Detection in Italian Tweets task (IronITA) within the context of EvalIta 2018. The system corresponds to a cascade of Support Vector Machine classifiers. Specific features and kernel functions have been proposed to tackle the different subtasks: Irony Classification and Sarcasm Classification. The proposed system ranked first in the Sarcasm Detection subtask (out of 7 submissions), while it ranked sixth (out of 17 submissions) in the Irony Detection task.

A kernel-based approach for irony and sarcasm detection in Italian / Santilli, A.; Croce, D.; Basili, R.. - 2263:(2018), pp. 146-151. (Intervento presentato al convegno 6th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop, EVALITA 2018 tenutosi a Torino; Italia) [10.4000/books.aaccademia.4613].

A kernel-based approach for irony and sarcasm detection in Italian

Santilli A.;
2018

Abstract

This paper describes the UNITOR system that participated to the Irony Detection in Italian Tweets task (IronITA) within the context of EvalIta 2018. The system corresponds to a cascade of Support Vector Machine classifiers. Specific features and kernel functions have been proposed to tackle the different subtasks: Irony Classification and Sarcasm Classification. The proposed system ranked first in the Sarcasm Detection subtask (out of 7 submissions), while it ranked sixth (out of 17 submissions) in the Irony Detection task.
2018
6th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop, EVALITA 2018
Natural Language Processing; sentiment analysis; kernel methods
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A kernel-based approach for irony and sarcasm detection in Italian / Santilli, A.; Croce, D.; Basili, R.. - 2263:(2018), pp. 146-151. (Intervento presentato al convegno 6th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop, EVALITA 2018 tenutosi a Torino; Italia) [10.4000/books.aaccademia.4613].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1643150
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact