Automatic analysis of rodent behavior has been receiving growing attention in recent years since rodents have been the reference species for many neuroscientific studies, with the social interaction being among the subjects of the most important ones. Systems that are employed in these studies are mainly based on tracking of mice and activity classification through supervised learning methods, trained on datasets manually annotated by experts. In this paper, we introduce a completely unsupervised way of analysing tracking data for the automatic identification of social and non-social behaviors using models capable of spotting regularities in the data. In particular, a mean-covariance Restricted Boltzmann Machine is employed to abstract higher-level behavioral configurations of mice interacting in an arena for a long time.

Unsupervised mouse behavior analysis: A data-driven study of mice interactions / Katsageorgiou, V. -M.; Zanotto, M.; Huang, H.; Ferretti, V.; Papaleo, F.; Sona, D.; Murino, V.. - 0:(2016), pp. 925-930. (Intervento presentato al convegno 2016 23rd International Conference on Pattern Recognition (ICPR) tenutosi a Cancun Mexico) [10.1109/ICPR.2016.7899754].

Unsupervised mouse behavior analysis: A data-driven study of mice interactions

Ferretti V.;
2016

Abstract

Automatic analysis of rodent behavior has been receiving growing attention in recent years since rodents have been the reference species for many neuroscientific studies, with the social interaction being among the subjects of the most important ones. Systems that are employed in these studies are mainly based on tracking of mice and activity classification through supervised learning methods, trained on datasets manually annotated by experts. In this paper, we introduce a completely unsupervised way of analysing tracking data for the automatic identification of social and non-social behaviors using models capable of spotting regularities in the data. In particular, a mean-covariance Restricted Boltzmann Machine is employed to abstract higher-level behavioral configurations of mice interacting in an arena for a long time.
2016
2016 23rd International Conference on Pattern Recognition (ICPR)
social behaviour, Unsupervised Mouse Behavior Analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Unsupervised mouse behavior analysis: A data-driven study of mice interactions / Katsageorgiou, V. -M.; Zanotto, M.; Huang, H.; Ferretti, V.; Papaleo, F.; Sona, D.; Murino, V.. - 0:(2016), pp. 925-930. (Intervento presentato al convegno 2016 23rd International Conference on Pattern Recognition (ICPR) tenutosi a Cancun Mexico) [10.1109/ICPR.2016.7899754].
File allegati a questo prodotto
File Dimensione Formato  
Katsageorgiou_Unsupervised_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.51 MB
Formato Adobe PDF
4.51 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1641000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact