This paper investigates the use of reinforcement learning for the optimal guidance of a spacecraft during a time-free low-thrust transfer between two libration point orbits in the cislunar environment. To this aim, a deep neural network is trained via Proximal Policy Optimization to map any spacecraft state to the optimal control action. A general-purpose reward is used to guide the network toward a fuel-optimal control law regardless of the specific orbits considered, and without the use of any ad-hoc reward shaping technique. Eventually, the learned control policies are compared with the optimal solutions provided by a direct method in two different mission scenarios, and Monte Carlo simulations are used to assess the policies robustness to navigation uncertainties.

Autonomous guidance for cislunar orbit transfers via reinforcement learning / Federici, Lorenzo; Scorsoglio, Andrea; Zavoli, Alessandro; Furfaro, Roberto. - (2023). (Intervento presentato al convegno 2021 AAS/AIAA Astrodynamics Specialist Conference tenutosi a virtual) [10.2514/1.A35747].

Autonomous guidance for cislunar orbit transfers via reinforcement learning

Lorenzo Federici;Alessandro Zavoli;
2023

Abstract

This paper investigates the use of reinforcement learning for the optimal guidance of a spacecraft during a time-free low-thrust transfer between two libration point orbits in the cislunar environment. To this aim, a deep neural network is trained via Proximal Policy Optimization to map any spacecraft state to the optimal control action. A general-purpose reward is used to guide the network toward a fuel-optimal control law regardless of the specific orbits considered, and without the use of any ad-hoc reward shaping technique. Eventually, the learned control policies are compared with the optimal solutions provided by a direct method in two different mission scenarios, and Monte Carlo simulations are used to assess the policies robustness to navigation uncertainties.
2023
2021 AAS/AIAA Astrodynamics Specialist Conference
autonomous spacecraft guidance; cislunar transfer; reinforcement learning; proximal policy optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Autonomous guidance for cislunar orbit transfers via reinforcement learning / Federici, Lorenzo; Scorsoglio, Andrea; Zavoli, Alessandro; Furfaro, Roberto. - (2023). (Intervento presentato al convegno 2021 AAS/AIAA Astrodynamics Specialist Conference tenutosi a virtual) [10.2514/1.A35747].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1640438
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact