Understanding the effects induced by carcinogens on primary colonic epithelial cells and how to counteract them might help to prevent colon cancer, which is one of the most frequent and aggressive cancers. In this study, we exposed primary human colonic epithelial cells (HCoEpC) to Benzo[a]pyrene (B[a]P) and found that it led to an increased production of pro-inflammatory cytokines and activated ERK1/2 and mTOR. These pathways are known to be involved in inflammatory bowel disease (IBD), which represents a colon cancer risk factor. Moreover, B[a]P reduced autophagy and mitophagy, processes whose dysregulation has been clearly demonstrated to predispose to cancer either by in vitro or in vivo studies. Interestingly, all the effects induced by B[a]P could be counteracted by 3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol, H), the most powerful anti-inflammatory and antioxidant compound contained in olive oil. This study sheds light on the mechanisms that could be involved in colon carcinogenesis induced by a chemical carcinogen and identifies a safe natural product that may help to prevent them.

3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol) Counteracts ERK1/2 and mTOR Activation, Pro-Inflammatory Cytokine Release, Autophagy and Mitophagy Reduction Mediated by Benzo[a]pyrene in Primary Human Colonic Epithelial Cells / Santarelli, R.; Pompili, C.; Gilardini Montani, M. S.; Evangelista, L.; Gonnella, R.; Cirone, M.. - In: PHARMACEUTICS. - ISSN 1999-4923. - 14:3(2022). [10.3390/pharmaceutics14030663]

3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol) Counteracts ERK1/2 and mTOR Activation, Pro-Inflammatory Cytokine Release, Autophagy and Mitophagy Reduction Mediated by Benzo[a]pyrene in Primary Human Colonic Epithelial Cells

Santarelli R.
Co-primo
;
Gilardini Montani M. S.;Gonnella R.;Cirone M.
Ultimo
2022

Abstract

Understanding the effects induced by carcinogens on primary colonic epithelial cells and how to counteract them might help to prevent colon cancer, which is one of the most frequent and aggressive cancers. In this study, we exposed primary human colonic epithelial cells (HCoEpC) to Benzo[a]pyrene (B[a]P) and found that it led to an increased production of pro-inflammatory cytokines and activated ERK1/2 and mTOR. These pathways are known to be involved in inflammatory bowel disease (IBD), which represents a colon cancer risk factor. Moreover, B[a]P reduced autophagy and mitophagy, processes whose dysregulation has been clearly demonstrated to predispose to cancer either by in vitro or in vivo studies. Interestingly, all the effects induced by B[a]P could be counteracted by 3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol, H), the most powerful anti-inflammatory and antioxidant compound contained in olive oil. This study sheds light on the mechanisms that could be involved in colon carcinogenesis induced by a chemical carcinogen and identifies a safe natural product that may help to prevent them.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1640213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact