The comprehension of the mechanism entailing efficient solvation of cyclodextrins (CD) by green solvents is of great relevance to boost environmentally sustainable usages of smart supramolecular systems. Here, 1-ethyl-3-methylimidazolium acetate, an ecofriendly ionic liquid (IL), is considered as an excellent solvent for native CDs. This IL efficiently dissolves up to 40 wt.% β- and γ-CD already at ambient temperature and X-ray scattering indicates that CDs do not tend to detrimental flocculation under these drastic concentration conditions. Simulation techniques reveal the intimate mechanism of CD solvation by the ionic species: while the strong hydrogen bonding acceptor acetate anion interacts with CD's hydroxyl groups, the imidazolium cation efficiently solvates the hydrophobic CD walls via dispersive interactions, thus hampering CD's hydrophobic driven flocking. Overall the amphiphilic nature of the proposed IL provides an excellent solvation environment for CDs, through the synergic action of its components.

Solubility and solvation features of native cyclodextrins in 1-ethyl-3-methylimidazolium acetate / Triolo, A.; Lo Celso, F.; Perez, J.; Russina, O.. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - 291:(2022), pp. 1-9. [10.1016/j.carbpol.2022.119622]

Solubility and solvation features of native cyclodextrins in 1-ethyl-3-methylimidazolium acetate

Triolo A.
;
Russina O.
2022

Abstract

The comprehension of the mechanism entailing efficient solvation of cyclodextrins (CD) by green solvents is of great relevance to boost environmentally sustainable usages of smart supramolecular systems. Here, 1-ethyl-3-methylimidazolium acetate, an ecofriendly ionic liquid (IL), is considered as an excellent solvent for native CDs. This IL efficiently dissolves up to 40 wt.% β- and γ-CD already at ambient temperature and X-ray scattering indicates that CDs do not tend to detrimental flocculation under these drastic concentration conditions. Simulation techniques reveal the intimate mechanism of CD solvation by the ionic species: while the strong hydrogen bonding acceptor acetate anion interacts with CD's hydroxyl groups, the imidazolium cation efficiently solvates the hydrophobic CD walls via dispersive interactions, thus hampering CD's hydrophobic driven flocking. Overall the amphiphilic nature of the proposed IL provides an excellent solvation environment for CDs, through the synergic action of its components.
2022
ionic liquids; cyclodextrin; solubility; green chemistry
01 Pubblicazione su rivista::01a Articolo in rivista
Solubility and solvation features of native cyclodextrins in 1-ethyl-3-methylimidazolium acetate / Triolo, A.; Lo Celso, F.; Perez, J.; Russina, O.. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - 291:(2022), pp. 1-9. [10.1016/j.carbpol.2022.119622]
File allegati a questo prodotto
File Dimensione Formato  
Triolo_Solubility _2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1639113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact