: Quantile regression is a semiparametric method for modeling associations between variables. It is most helpful when the covariates have complex relationships with the location, scale, and shape of the outcome distribution. Despite the method's robustness to distributional assumptions and outliers in the outcome, regression quantiles may be biased in the presence of measurement error in the covariates. The impact of function-valued covariates contaminated with heteroscedastic error has not yet been examined previously; although, studies have investigated the case of scalar-valued covariates. We present a two-stage strategy to consistently fit linear quantile regression models with a function-valued covariate that may be measured with error. In the first stage, an instrumental variable is used to estimate the covariance matrix associated with the measurement error. In the second stage, simulation extrapolation (SIMEX) is used to correct for measurement error in the function-valued covariate. Point-wise standard errors are estimated by means of nonparametric bootstrap. We present simulation studies to assess the robustness of the measurement error corrected for functional quantile regression. Our methods are applied to National Health and Examination Survey data to assess the relationship between physical activity and body mass index among adults in the United States.

Estimation of sparse functional quantile regression with measurement error: a SIMEX approach / Tekwe, Carmen D; Zhang, Mengli; Carroll, Raymond J; Luan, Yuanyuan; Xue, Lan; Zoh, Roger S; Carter, Stephen J; Allison, David B; Geraci, Marco. - In: BIOSTATISTICS. - ISSN 1465-4644. - (2022). [10.1093/biostatistics/kxac017]

Estimation of sparse functional quantile regression with measurement error: a SIMEX approach

Geraci, Marco
2022

Abstract

: Quantile regression is a semiparametric method for modeling associations between variables. It is most helpful when the covariates have complex relationships with the location, scale, and shape of the outcome distribution. Despite the method's robustness to distributional assumptions and outliers in the outcome, regression quantiles may be biased in the presence of measurement error in the covariates. The impact of function-valued covariates contaminated with heteroscedastic error has not yet been examined previously; although, studies have investigated the case of scalar-valued covariates. We present a two-stage strategy to consistently fit linear quantile regression models with a function-valued covariate that may be measured with error. In the first stage, an instrumental variable is used to estimate the covariance matrix associated with the measurement error. In the second stage, simulation extrapolation (SIMEX) is used to correct for measurement error in the function-valued covariate. Point-wise standard errors are estimated by means of nonparametric bootstrap. We present simulation studies to assess the robustness of the measurement error corrected for functional quantile regression. Our methods are applied to National Health and Examination Survey data to assess the relationship between physical activity and body mass index among adults in the United States.
2022
Functional data analysis; Obesity; Physical activity; Spline basis splines; Wearable accelerometer
01 Pubblicazione su rivista::01a Articolo in rivista
Estimation of sparse functional quantile regression with measurement error: a SIMEX approach / Tekwe, Carmen D; Zhang, Mengli; Carroll, Raymond J; Luan, Yuanyuan; Xue, Lan; Zoh, Roger S; Carter, Stephen J; Allison, David B; Geraci, Marco. - In: BIOSTATISTICS. - ISSN 1465-4644. - (2022). [10.1093/biostatistics/kxac017]
File allegati a questo prodotto
File Dimensione Formato  
Geraci_Estimation-sparse-functional-quantile -regression_2022.pdf

Open Access dal 03/06/2024

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1638967
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact