Smart homes represent examples of cyber-physical environments realizing the paradigm known as ambient intelligence. An information system supporting ambient intelligence takes as input raw sensor measurements and analyzes them to eventually make decisions following final user preferences and needs. Unfortunately, algorithms in this research area are mostly supervised, thus requiring a manual labeling of training instances usually involving final users in annoying and imprecise training sessions. In this paper, we propose an unsupervised approach allowing, given a sensor log, to automatically segment human habits on a temporal basis, by applying a bottom-up discretization strategy to the timestamp attribute of the sensor log.

Unsupervised segmentation of human habits in smart home logs through process discovery / Esposito, L.; Veneruso, S.; Leotta, F.; Monti, F.; Mathew, J. G.; Mecella, M.. - 2952:(2021), pp. 56-61. (Intervento presentato al convegno 1st Italian Forum on Business Process Management, ITBPM 2021 tenutosi a ita).

Unsupervised segmentation of human habits in smart home logs through process discovery

Esposito L.;Veneruso S.
;
Leotta F.
;
Monti F.;Mathew J. G.;Mecella M.
2021

Abstract

Smart homes represent examples of cyber-physical environments realizing the paradigm known as ambient intelligence. An information system supporting ambient intelligence takes as input raw sensor measurements and analyzes them to eventually make decisions following final user preferences and needs. Unfortunately, algorithms in this research area are mostly supervised, thus requiring a manual labeling of training instances usually involving final users in annoying and imprecise training sessions. In this paper, we propose an unsupervised approach allowing, given a sensor log, to automatically segment human habits on a temporal basis, by applying a bottom-up discretization strategy to the timestamp attribute of the sensor log.
2021
1st Italian Forum on Business Process Management, ITBPM 2021
Ambient intelligence; Habit mining; Process mining; Unsupervised log segmentation
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Unsupervised segmentation of human habits in smart home logs through process discovery / Esposito, L.; Veneruso, S.; Leotta, F.; Monti, F.; Mathew, J. G.; Mecella, M.. - 2952:(2021), pp. 56-61. (Intervento presentato al convegno 1st Italian Forum on Business Process Management, ITBPM 2021 tenutosi a ita).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1638813
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact