The corner failure is one of the most typical local mechanisms in masonry buildings vulnerable to earthquakes. The seismic assessment of this mechanism is poorly studied in the literature and in this paper it is addressed by means of both nonlinear static and dynamic analyses of rocking rigid blocks. The static approach is based on the displacement-based method and is aimed at predicting the onset of the 3D failure mechanism and its evolution through incremental kinematic analysis. This approach also considers the presence of a thrusting roof and the stabilizing contribution of frictional resistances exerted within interlocked walls. The capacity in terms of both forces and displacements is compared with the seismic demand through the construction of acceleration–displacement response spectra, with some originality. The nonlinear dynamic approach is based on the seminal Housner’s work on rocking rigid blocks and considers the influence of transverse walls, roof overloads and outward thrust, all included in an updated equation of one-sided motion. In particular, the process of defining an equivalent prismatic block, representative of the original corner geometry, is presented to convert the 3D dynamic problem into a 2D rocking motion. The wide suitability and advantage of such modeling approaches to assess the seismic response of rocking masonry structures with reference to specific limit states are demonstrated through a real case study, i.e. the collapse of a corner in a masonry school building during the 2016–2017 Central Italy seismic sequence. The compared results provide a good agreement of predictions in terms of both onset and overturning conditions, for which the static model appears to be more conservative than the dynamic one.

Non-Linear Static and Dynamic Analysis of Rocking Masonry Corners Using Rigid Macro-Block Modelling / Casapulla, C.; Giresini, L.; Argiento, L. U.; Maione, A.. - In: INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY & DYNAMICS. - ISSN 0219-4554. - 19:11(2019). [10.1142/S0219455419501372]

Non-Linear Static and Dynamic Analysis of Rocking Masonry Corners Using Rigid Macro-Block Modelling

Giresini L.;
2019

Abstract

The corner failure is one of the most typical local mechanisms in masonry buildings vulnerable to earthquakes. The seismic assessment of this mechanism is poorly studied in the literature and in this paper it is addressed by means of both nonlinear static and dynamic analyses of rocking rigid blocks. The static approach is based on the displacement-based method and is aimed at predicting the onset of the 3D failure mechanism and its evolution through incremental kinematic analysis. This approach also considers the presence of a thrusting roof and the stabilizing contribution of frictional resistances exerted within interlocked walls. The capacity in terms of both forces and displacements is compared with the seismic demand through the construction of acceleration–displacement response spectra, with some originality. The nonlinear dynamic approach is based on the seminal Housner’s work on rocking rigid blocks and considers the influence of transverse walls, roof overloads and outward thrust, all included in an updated equation of one-sided motion. In particular, the process of defining an equivalent prismatic block, representative of the original corner geometry, is presented to convert the 3D dynamic problem into a 2D rocking motion. The wide suitability and advantage of such modeling approaches to assess the seismic response of rocking masonry structures with reference to specific limit states are demonstrated through a real case study, i.e. the collapse of a corner in a masonry school building during the 2016–2017 Central Italy seismic sequence. The compared results provide a good agreement of predictions in terms of both onset and overturning conditions, for which the static model appears to be more conservative than the dynamic one.
2019
Incremental kinematic analysis; dynamics of rigid blocks; out-of-plane behavior; frictional resistances; horizontal restraint; 2016–2017 Central Italy earthquakes
01 Pubblicazione su rivista::01a Articolo in rivista
Non-Linear Static and Dynamic Analysis of Rocking Masonry Corners Using Rigid Macro-Block Modelling / Casapulla, C.; Giresini, L.; Argiento, L. U.; Maione, A.. - In: INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY & DYNAMICS. - ISSN 0219-4554. - 19:11(2019). [10.1142/S0219455419501372]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1635952
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 33
social impact