In this paper enantiomers of selected chiral agrochemicals representing various structural classes were separated by using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) employing a capillary column packed with silica particles containing immobilized amylose tris(3–chloro-5- methylphenylcarbamate) (i-ADMPC) as a chiral selector (CS). Special attention was paid to peak dispersion in nano-LC and CEC instruments used in order to make comparison between these two techniques more reliable. Enantioseparations were studied utilizing methanol (MeOH) or acetonitrile-water (ACN–H2O), both containing 5 mM of ammonium acetate as the mobile phases (MPs). The tested chiral stationary phase (CSP), containing 20% (w/w) of the neutral CS onto native silica, allowed the generation of sufficiently strong electroosmotic flow (EOF) to observe separation of enantiomers of studied agrochemicals in a reasonable time also in CEC mode. Modestly higher efficiencies and enantioresolutions were obtained in CEC than in nano-LC. Just a moderate preference of CEC over nano-LC in this particular study can be explained with a significant mass transfer resistance through the CSP that is caused due to high content of the CS in CSP.
Enantioseparation of selected chiral agrochemicals by using nano-liquid chromatography and capillary electrochromatography with amylose tris(3‑chloro-5-methylphenylcarbamate) covalently immobilized onto silica / De Cesaris, Massimo Giuseppe; D'Orazio, Giovanni; Fanali, Chiara; Gentili, Alessandra; Takaishvili, Nino; Chankvetadze, Bezhan; Fanali, Salvatore. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 0021-9673. - 1673:(2022), pp. 463128-463136. [10.1016/j.chroma.2022.463128]
Enantioseparation of selected chiral agrochemicals by using nano-liquid chromatography and capillary electrochromatography with amylose tris(3‑chloro-5-methylphenylcarbamate) covalently immobilized onto silica
De Cesaris, Massimo Giuseppe;Gentili, Alessandra;
2022
Abstract
In this paper enantiomers of selected chiral agrochemicals representing various structural classes were separated by using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) employing a capillary column packed with silica particles containing immobilized amylose tris(3–chloro-5- methylphenylcarbamate) (i-ADMPC) as a chiral selector (CS). Special attention was paid to peak dispersion in nano-LC and CEC instruments used in order to make comparison between these two techniques more reliable. Enantioseparations were studied utilizing methanol (MeOH) or acetonitrile-water (ACN–H2O), both containing 5 mM of ammonium acetate as the mobile phases (MPs). The tested chiral stationary phase (CSP), containing 20% (w/w) of the neutral CS onto native silica, allowed the generation of sufficiently strong electroosmotic flow (EOF) to observe separation of enantiomers of studied agrochemicals in a reasonable time also in CEC mode. Modestly higher efficiencies and enantioresolutions were obtained in CEC than in nano-LC. Just a moderate preference of CEC over nano-LC in this particular study can be explained with a significant mass transfer resistance through the CSP that is caused due to high content of the CS in CSP.File | Dimensione | Formato | |
---|---|---|---|
DeCesaris_Enantioseparation_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.