We have synthesized and done an extensive chemical–physical analysis of the behavior of a new compound, named MBET306, a synthetic precursor of the recently discovered tartrate-based inhibitors of the protein Tumor Necrosis factor-a Converting Enzyme (TACE). Experimental and theoretical data have shown that in water solution MBET306 is overwhelmingly found as a monoanion at physiological pH, in a conformation that differs substantially from that detected in the known co-crystal structures of MBET306 derivatives bound to TACE. The body of collected experimental and theoretical data indicates that the monoanionic species binds Zn(II) inducing a strong stabilization of the crystal-like arrangement of the central tartrate zinc-binding group, lending support for a two step TACE docking mechanism via a zinc-bound intermediate. The thorough chemical–physical characterization of the conformational behavior of free and zinc-bound MBET306 in water bulk solution opens new avenues for the rational drug design of tartrate-based highly specific TACE inhibitors

Chemical–physical analysis of a tartrate model compound for TACE inhibition / Banchelli, Martina; Guardiani, Carlo; Tenori, Eleonora; Menichetti, Stefano; Caminati, Gabriella; Procacci, Piero. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 15:(2013), pp. 18881-18893. [10.1039/c3cp52955j]

Chemical–physical analysis of a tartrate model compound for TACE inhibition

GUARDIANI, CARLO;
2013

Abstract

We have synthesized and done an extensive chemical–physical analysis of the behavior of a new compound, named MBET306, a synthetic precursor of the recently discovered tartrate-based inhibitors of the protein Tumor Necrosis factor-a Converting Enzyme (TACE). Experimental and theoretical data have shown that in water solution MBET306 is overwhelmingly found as a monoanion at physiological pH, in a conformation that differs substantially from that detected in the known co-crystal structures of MBET306 derivatives bound to TACE. The body of collected experimental and theoretical data indicates that the monoanionic species binds Zn(II) inducing a strong stabilization of the crystal-like arrangement of the central tartrate zinc-binding group, lending support for a two step TACE docking mechanism via a zinc-bound intermediate. The thorough chemical–physical characterization of the conformational behavior of free and zinc-bound MBET306 in water bulk solution opens new avenues for the rational drug design of tartrate-based highly specific TACE inhibitors
2013
HAMILTONIAN REPLICA EXCHANGE; MOLECULAR-DYNAMICS SIMULATIONS; TUMOR NECROSIS FACTOR ALPHA-CONVERTING-ENZYME
01 Pubblicazione su rivista::01a Articolo in rivista
Chemical–physical analysis of a tartrate model compound for TACE inhibition / Banchelli, Martina; Guardiani, Carlo; Tenori, Eleonora; Menichetti, Stefano; Caminati, Gabriella; Procacci, Piero. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 15:(2013), pp. 18881-18893. [10.1039/c3cp52955j]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1634184
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact