The yeast Saccharomyces cerevisiae genome is endowed with two distinct isoforms of Voltage-Dependent Anion Channel (VDAC). The isoform yVDAC2 is currently understudied with respect to the best known yVDAC1. Yet, since the discovery, the function of yVDAC2 was unclear, leading to the hypothesis that it might be devoid of a channel function. In this work we have elucidated, by bioinformatics modeling and electrophysiological analysis, the functional activity of yVDAC2. The conformation of yVDAC2 and, for comparison, of yVDAC1 were modeled using a multiple template approach involving mouse, human and zebrafish structures and both showed to arrange the sequences as the typical 19-stranded VDAC β-barrel. Molecular dynamics simulations showed that yVDAC2, in comparison with yVDAC1, has a different number of permeation paths of potassium and chloride ions. yVDAC2 protein was over-expressed in the S. cerevisiae cells depleted of functional yVDAC1 (Δpor1 mutant) and, after purification, it was reconstituted in artificial membranes (planar lipid bilayer (PLB) system). The protein displayed channel-forming activity and the calculated conductance, voltage-dependence and ion selectivity values were similar to those of yVDAC1 and other members of VDAC family. This is the first time that yVDAC2 channel features are detected and characterized.

yVDAC2, the second mitochondrial porin isoform of saccharomyces cerevisiae / Guardiani, C.; Magri, A.; Karachitos, A.; Di Rosa, M. C.; Reina, S.; Bodrenko, I.; Messina, A.; Kmita, H.; Ceccarelli, M.; De Pinto, V.. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS. - ISSN 0005-2728. - 1859:4(2018), pp. 270-279. [10.1016/j.bbabio.2018.01.008]

yVDAC2, the second mitochondrial porin isoform of saccharomyces cerevisiae

Guardiani C.;Magri A.;
2018

Abstract

The yeast Saccharomyces cerevisiae genome is endowed with two distinct isoforms of Voltage-Dependent Anion Channel (VDAC). The isoform yVDAC2 is currently understudied with respect to the best known yVDAC1. Yet, since the discovery, the function of yVDAC2 was unclear, leading to the hypothesis that it might be devoid of a channel function. In this work we have elucidated, by bioinformatics modeling and electrophysiological analysis, the functional activity of yVDAC2. The conformation of yVDAC2 and, for comparison, of yVDAC1 were modeled using a multiple template approach involving mouse, human and zebrafish structures and both showed to arrange the sequences as the typical 19-stranded VDAC β-barrel. Molecular dynamics simulations showed that yVDAC2, in comparison with yVDAC1, has a different number of permeation paths of potassium and chloride ions. yVDAC2 protein was over-expressed in the S. cerevisiae cells depleted of functional yVDAC1 (Δpor1 mutant) and, after purification, it was reconstituted in artificial membranes (planar lipid bilayer (PLB) system). The protein displayed channel-forming activity and the calculated conductance, voltage-dependence and ion selectivity values were similar to those of yVDAC1 and other members of VDAC family. This is the first time that yVDAC2 channel features are detected and characterized.
2018
outer mitochondrial membrane (OMM); yeast VDAC isoforms; molecular dynamics
01 Pubblicazione su rivista::01a Articolo in rivista
yVDAC2, the second mitochondrial porin isoform of saccharomyces cerevisiae / Guardiani, C.; Magri, A.; Karachitos, A.; Di Rosa, M. C.; Reina, S.; Bodrenko, I.; Messina, A.; Kmita, H.; Ceccarelli, M.; De Pinto, V.. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS. - ISSN 0005-2728. - 1859:4(2018), pp. 270-279. [10.1016/j.bbabio.2018.01.008]
File allegati a questo prodotto
File Dimensione Formato  
Guardiani_yVDAC2_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1634045
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact