The mean-field limit for systems of self-propelled agents with “topological interaction” cannot be obtained by means of the usual Dobrushin approach. We get results by adapting to the multidimensional case the techniques developed by Trocheris in 1986 to treat the Vlasov-Poisson equation in one dimension.

MEAN-FIELD LIMIT FOR PARTICLE SYSTEMS WITH TOPOLOGICAL INTERACTIONS / Benedetto, D.; Caglioti, E.; Rossi, S.. - In: MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS. - ISSN 2326-7186. - 9:4(2021), pp. 423-440. [10.2140/memocs.2021.9.423]

MEAN-FIELD LIMIT FOR PARTICLE SYSTEMS WITH TOPOLOGICAL INTERACTIONS

Benedetto D.;Caglioti E.;Rossi S.
2021

Abstract

The mean-field limit for systems of self-propelled agents with “topological interaction” cannot be obtained by means of the usual Dobrushin approach. We get results by adapting to the multidimensional case the techniques developed by Trocheris in 1986 to treat the Vlasov-Poisson equation in one dimension.
2021
Cucker-Smale model; mean-field limit; topological interaction
01 Pubblicazione su rivista::01a Articolo in rivista
MEAN-FIELD LIMIT FOR PARTICLE SYSTEMS WITH TOPOLOGICAL INTERACTIONS / Benedetto, D.; Caglioti, E.; Rossi, S.. - In: MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS. - ISSN 2326-7186. - 9:4(2021), pp. 423-440. [10.2140/memocs.2021.9.423]
File allegati a questo prodotto
File Dimensione Formato  
Benedetto_Mean-field-limit_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 849.39 kB
Formato Adobe PDF
849.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1633437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact