We consider a parabolic transmission problem, involving nonlinear fractional operators of different order, across a fractal interface sigma. The transmission condition is of Robin type and it involves the jump of the p fractional normal derivatives on the irregular interface. After proving existence and uniqueness results for the weak solution of the problem at hand, via a semigroup approach, we investigate the regularity of the nonlinear fractional semigroup.

Transmission problems for the fractional p-Laplacian across fractal interfaces / Creo, Simone; Lancia, Maria Rosaria; Vernole, Paola. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 15:12(2022), pp. 3621-3644. [10.3934/dcdss.2022047]

Transmission problems for the fractional p-Laplacian across fractal interfaces

Simone Creo;Maria Rosaria Lancia
;
Paola Vernole
2022

Abstract

We consider a parabolic transmission problem, involving nonlinear fractional operators of different order, across a fractal interface sigma. The transmission condition is of Robin type and it involves the jump of the p fractional normal derivatives on the irregular interface. After proving existence and uniqueness results for the weak solution of the problem at hand, via a semigroup approach, we investigate the regularity of the nonlinear fractional semigroup.
2022
Fractional p-Laplacian; fractal domains; fractional Green formula; nonlinear semigroups; ultracontractivity
01 Pubblicazione su rivista::01a Articolo in rivista
Transmission problems for the fractional p-Laplacian across fractal interfaces / Creo, Simone; Lancia, Maria Rosaria; Vernole, Paola. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 15:12(2022), pp. 3621-3644. [10.3934/dcdss.2022047]
File allegati a questo prodotto
File Dimensione Formato  
Creo_transmission_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 506.44 kB
Formato Adobe PDF
506.44 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1633315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact