In an attempt to isolate new spermatogenesis-associated genes, pd1 was initially identified and cloned as a novel human cDNA sequence from testis cDNA library. The novel gene was submitted to GenBank under accession n degrees U28164 in 1996. PD1 expression was demonstrated at the Sertoli cell level with a production which appeared to be under the influence of neighbouring spermatogenic cells. The rat orthologue of human pd1 was further cloned and, according to the Gene Nomenclature Committee, was renamed spata2 (spermatogenesis-associated protein 2) gene on the basis of its FSH-dependent up-regulation and developmental expression. The analysis of the human and rat cDNA sequences disclosed an open reading frame for a protein of 520 and 511 amino acids respectively, with an overall identity of 85%. Subsequently, a zebrafish orthologue of the human spata2 gene was identified. The consensus open reading frame (1650 bp) encodes a polypeptide of 550 amino acids, which shares 37% identity with the human spata2. By means of whole-mount in situ hybridisation it has been shown that spata2 transcripts are maternally derived and become strongly localised in the central nervous system at early developmental stages. At the same time, RT-PCR analysis demonstrated that several adult zebrafish tissues expressed high level of spata2 mRNA providing evidence that this gene may have a broader function than previously described. More recently, novel findings have highlighted a potential role of spata2 during pancreatic development and beta-cell proliferation. In this review we will discuss spata2 gene expression and regulation as well as focus on novel evidence, which suggests a role for this protein in pancreatic beta-cell function.

The Story of SPATA2 (Spermatogenesis-Associated Protein 2): From Sertoli Cells to Pancreatic Beta-Cells / Maran, Claudio; Tassone, Evelyne; Masola, Valentina; Maurizio Onisto, And. - In: CURRENT GENOMICS. - ISSN 1389-2029. - (2009). [10.2174/138920209788920976]

The Story of SPATA2 (Spermatogenesis-Associated Protein 2): From Sertoli Cells to Pancreatic Beta-Cells

Evelyne Tassone
Secondo
Writing – Original Draft Preparation
;
2009

Abstract

In an attempt to isolate new spermatogenesis-associated genes, pd1 was initially identified and cloned as a novel human cDNA sequence from testis cDNA library. The novel gene was submitted to GenBank under accession n degrees U28164 in 1996. PD1 expression was demonstrated at the Sertoli cell level with a production which appeared to be under the influence of neighbouring spermatogenic cells. The rat orthologue of human pd1 was further cloned and, according to the Gene Nomenclature Committee, was renamed spata2 (spermatogenesis-associated protein 2) gene on the basis of its FSH-dependent up-regulation and developmental expression. The analysis of the human and rat cDNA sequences disclosed an open reading frame for a protein of 520 and 511 amino acids respectively, with an overall identity of 85%. Subsequently, a zebrafish orthologue of the human spata2 gene was identified. The consensus open reading frame (1650 bp) encodes a polypeptide of 550 amino acids, which shares 37% identity with the human spata2. By means of whole-mount in situ hybridisation it has been shown that spata2 transcripts are maternally derived and become strongly localised in the central nervous system at early developmental stages. At the same time, RT-PCR analysis demonstrated that several adult zebrafish tissues expressed high level of spata2 mRNA providing evidence that this gene may have a broader function than previously described. More recently, novel findings have highlighted a potential role of spata2 during pancreatic development and beta-cell proliferation. In this review we will discuss spata2 gene expression and regulation as well as focus on novel evidence, which suggests a role for this protein in pancreatic beta-cell function.
2009
Spata2, Sertoli cells, pancreatic beta-cells
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
The Story of SPATA2 (Spermatogenesis-Associated Protein 2): From Sertoli Cells to Pancreatic Beta-Cells / Maran, Claudio; Tassone, Evelyne; Masola, Valentina; Maurizio Onisto, And. - In: CURRENT GENOMICS. - ISSN 1389-2029. - (2009). [10.2174/138920209788920976]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1633044
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact