Introduction Body-mass index is a major determinant of left-ventricular-mass (LVM). Bariatric-metabolic surgery (BMS) reduces cardiovascular mortality. Its mechanism of action, however, often encompasses a weight-dependent effect. In this translational study, we aimed at investigating the mechanisms by which BMS leads to LVM reductionand functional improvement. Methods Twenty patients (45.2 § 8.5years) were studied with echocardiography at baseline and at 1,6,12 and 48 months after sleeve-gastrectomy (SG). Ten Wistar rats aged 10-weeks received high-fat diet ad libitum for 10 weeks before and 4 weeks after SG or sham-operation. An oral-glucose-tolerance-test was performed to measure wholebody insulin-sensitivity. Plasma metabolomics was analysed in both human and rodent samples. RNA quantitative Real-Time PCR and western blots were performed in rodent heart biopsies. The best-fitted partial-least-square discriminant- analysis model was used to explore the variable importance in the projection score of all metabolites. Findings Echocardiographic LVM (-12%,-23%,-28% and -43% at 1,6,12 and 48 months, respectively) and epicardial fat decreased overtime after SG in humans while insulin-sensitivity improved. In rats, SG significantly reduced LVM and epicardial fat, enhanced ejection-fraction and improved insulin-sensitivity compared to sham-operation. Metabolomics showed a progressive decline of plasma branched-chain amino-acids (BCAA), alanine, lactate, 3-OHbutyrate, acetoacetate, creatine and creatinine levels in both humans and rodents. Hearts of SG rats had a more efficient BCAA, glucose and fatty-acid metabolism and insulin signaling than shamoperation. BCAAs in cardiomyocyte culture-medium stimulated lipogenic gene transcription and reduced mRNA levels of key mitochondrial b-oxidation enzymes promoting lipid droplet accumulation and glycolysis. Interpretation After SG a prompt and sustained decrease of the LVM, epicardial fat and insulin resistance was found. Animal and in vitro studies showed that SG improves cardiac BCAA metabolism with consequent amelioration of fat oxidation and insulin signaling translating into decreased intra-myocytic fat accumulation and reduced lipotoxicity.

The early reduction of left ventricular mass after sleeve gastrectomy depends on the fall of branched-chain amino acid circulating levels / CASTAGNETO GISSEY, Lidia; Angelini, Giulia; Mingrone, Geltrude; Cavarretta, Elena; Tenori, Leonardo; Licari, Cristina; Luchinat, Claudio; Luise Tiepner, Anna; Basso, Nicola; Bornstein, Stefan R.; Bhatt, Deepak L.; Casella, Giovanni. - In: EBIOMEDICINE. - ISSN 2352-3964. - (2022). [10.1016/j.ebiom.2022.103864]

The early reduction of left ventricular mass after sleeve gastrectomy depends on the fall of branched-chain amino acid circulating levels

Lidia Castagneto-Gissey
Primo
;
Elena Cavarretta;Nicola Basso;Giovanni Casella
Ultimo
2022

Abstract

Introduction Body-mass index is a major determinant of left-ventricular-mass (LVM). Bariatric-metabolic surgery (BMS) reduces cardiovascular mortality. Its mechanism of action, however, often encompasses a weight-dependent effect. In this translational study, we aimed at investigating the mechanisms by which BMS leads to LVM reductionand functional improvement. Methods Twenty patients (45.2 § 8.5years) were studied with echocardiography at baseline and at 1,6,12 and 48 months after sleeve-gastrectomy (SG). Ten Wistar rats aged 10-weeks received high-fat diet ad libitum for 10 weeks before and 4 weeks after SG or sham-operation. An oral-glucose-tolerance-test was performed to measure wholebody insulin-sensitivity. Plasma metabolomics was analysed in both human and rodent samples. RNA quantitative Real-Time PCR and western blots were performed in rodent heart biopsies. The best-fitted partial-least-square discriminant- analysis model was used to explore the variable importance in the projection score of all metabolites. Findings Echocardiographic LVM (-12%,-23%,-28% and -43% at 1,6,12 and 48 months, respectively) and epicardial fat decreased overtime after SG in humans while insulin-sensitivity improved. In rats, SG significantly reduced LVM and epicardial fat, enhanced ejection-fraction and improved insulin-sensitivity compared to sham-operation. Metabolomics showed a progressive decline of plasma branched-chain amino-acids (BCAA), alanine, lactate, 3-OHbutyrate, acetoacetate, creatine and creatinine levels in both humans and rodents. Hearts of SG rats had a more efficient BCAA, glucose and fatty-acid metabolism and insulin signaling than shamoperation. BCAAs in cardiomyocyte culture-medium stimulated lipogenic gene transcription and reduced mRNA levels of key mitochondrial b-oxidation enzymes promoting lipid droplet accumulation and glycolysis. Interpretation After SG a prompt and sustained decrease of the LVM, epicardial fat and insulin resistance was found. Animal and in vitro studies showed that SG improves cardiac BCAA metabolism with consequent amelioration of fat oxidation and insulin signaling translating into decreased intra-myocytic fat accumulation and reduced lipotoxicity.
2022
Bariatric/metabolic surgery; left ventricular mass; epicardial fat; metabolomics; gene expression
01 Pubblicazione su rivista::01a Articolo in rivista
The early reduction of left ventricular mass after sleeve gastrectomy depends on the fall of branched-chain amino acid circulating levels / CASTAGNETO GISSEY, Lidia; Angelini, Giulia; Mingrone, Geltrude; Cavarretta, Elena; Tenori, Leonardo; Licari, Cristina; Luchinat, Claudio; Luise Tiepner, Anna; Basso, Nicola; Bornstein, Stefan R.; Bhatt, Deepak L.; Casella, Giovanni. - In: EBIOMEDICINE. - ISSN 2352-3964. - (2022). [10.1016/j.ebiom.2022.103864]
File allegati a questo prodotto
File Dimensione Formato  
Casella_Reduction-of-left-ventricular-mass_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1628125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact