We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers reside initially at a particular point of the metric space and serve a sequence of requests. In the framework of competitive analysis, we show a surprisingly tight connection between this problem and the resource augmentation version of the k-server problem, also known as the (h,k)-server problem, in which an online algorithm with k servers competes against an offline algorithm with h servers. Specifically, we show that the infinite server problem has bounded competitive ratio if and only if the (h,k)-server problem has bounded competitive ratio for some k=O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite server problem, which holds even for the line and some simple weighted stars. It implies the same lower bound for the (h,k)-server problem on the line, even when k/h → ∞, improving on the previous known bounds of 2 for the line and 2.4 for general metrics. For weighted trees and layered graphs, we obtain upper bounds, although they depend on the depth. Of particular interest is the infinite server problem on the line, which we show to be equivalent to the seemingly easier case in which all requests are in a fixed bounded interval. This is a special case of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately, classical approaches (double coverage and generalizations, work function algorithm, balancing algorithms) fail even for this special case.

The Infinite Server Problem / Coester, Christian; Koutsoupias, Elias; Lazos, Filippos. - In: ACM TRANSACTIONS ON ALGORITHMS. - ISSN 1549-6325. - 17:3(2021), pp. 1-23. [10.1145/3456632]

The Infinite Server Problem

Filippos Lazos
2021

Abstract

We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers reside initially at a particular point of the metric space and serve a sequence of requests. In the framework of competitive analysis, we show a surprisingly tight connection between this problem and the resource augmentation version of the k-server problem, also known as the (h,k)-server problem, in which an online algorithm with k servers competes against an offline algorithm with h servers. Specifically, we show that the infinite server problem has bounded competitive ratio if and only if the (h,k)-server problem has bounded competitive ratio for some k=O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite server problem, which holds even for the line and some simple weighted stars. It implies the same lower bound for the (h,k)-server problem on the line, even when k/h → ∞, improving on the previous known bounds of 2 for the line and 2.4 for general metrics. For weighted trees and layered graphs, we obtain upper bounds, although they depend on the depth. Of particular interest is the infinite server problem on the line, which we show to be equivalent to the seemingly easier case in which all requests are in a fixed bounded interval. This is a special case of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately, classical approaches (double coverage and generalizations, work function algorithm, balancing algorithms) fail even for this special case.
2021
resource augmentation; competitive analysis; k-server; online algorithms
01 Pubblicazione su rivista::01a Articolo in rivista
The Infinite Server Problem / Coester, Christian; Koutsoupias, Elias; Lazos, Filippos. - In: ACM TRANSACTIONS ON ALGORITHMS. - ISSN 1549-6325. - 17:3(2021), pp. 1-23. [10.1145/3456632]
File allegati a questo prodotto
File Dimensione Formato  
Coester_The-Infinite_2021.pdf

accesso aperto

Note: https://dl.acm.org/doi/10.1145/3456632
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 354.13 kB
Formato Adobe PDF
354.13 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1627753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact