Excessive non-enzymic glycation of proteins alters their physicochemical properties, with possible pathological effects. We investigated the in vitro inhibition of protein glycation by D-lysine--an isomer not incorporated into mammalian proteins but possessing the same chemical characteristics as L-lysine. Glucose incorporation was studied as follows: (a) human albumin, IgG, collagen, and isolated glomerular basement membrane were incubated for 20 days with D-glucose (5.0, 10.0, and 20.0 mmol/L) in the presence of D-lysine at 1/10 the sugar concentration; (b) albumin was incubated in similar glucose concentrations but with a constant amount (2.0 mmol/L) of D-lysine; (c) albumin and IgG were incubated for 10 days in buffer containing glucose (10 mmol/L) and increasing concentrations of D-lysine (0.25, 0.5, 1.0, 2.0, and 4.0 mmol/L); (d) inhibition specificity was tested by treating albumin as in c but with glycerol present rather than D-lysine. In addition, we measured ketoamine after incubating albumin (50 g/L) in 10 mmol/L glucose for 10 days in the presence of D-lysine (0.25, 0.5, 1.0, and 2.0 mmol/L). The results show that (a) the amount of glucose bound to the four proteins was significantly (P less than 0.05) decreased in the presence of D-lysine at the higher concentrations of glucose; (b) the lower the glucose concentration, the higher was the inhibitory effect of D-lysine; (c) the inhibition of glucose incorporation into proteins correlated directly with the concentration of D-lysine; (d) no inhibition was observed with glycerol. Ketoamine decreased with increase in D-lysine (P less than 0.01). The effective diminution of non-enzymatic glycation by D-lysine highlights its potential use in vivo.

D-LYSINE EFFECTIVELY DECREASES THE NON-ENZYMIC GLYCATION OF PROTEINS INVITRO / Sensi, M; Pricci, F; Derossi, Mg; Morano, S; Dimarlo, U. - In: CLINICAL CHEMISTRY. - ISSN 1056-599X. - 35:3(1989), pp. 384-387.

D-LYSINE EFFECTIVELY DECREASES THE NON-ENZYMIC GLYCATION OF PROTEINS INVITRO

SENSI, M;MORANO, S;
1989

Abstract

Excessive non-enzymic glycation of proteins alters their physicochemical properties, with possible pathological effects. We investigated the in vitro inhibition of protein glycation by D-lysine--an isomer not incorporated into mammalian proteins but possessing the same chemical characteristics as L-lysine. Glucose incorporation was studied as follows: (a) human albumin, IgG, collagen, and isolated glomerular basement membrane were incubated for 20 days with D-glucose (5.0, 10.0, and 20.0 mmol/L) in the presence of D-lysine at 1/10 the sugar concentration; (b) albumin was incubated in similar glucose concentrations but with a constant amount (2.0 mmol/L) of D-lysine; (c) albumin and IgG were incubated for 10 days in buffer containing glucose (10 mmol/L) and increasing concentrations of D-lysine (0.25, 0.5, 1.0, 2.0, and 4.0 mmol/L); (d) inhibition specificity was tested by treating albumin as in c but with glycerol present rather than D-lysine. In addition, we measured ketoamine after incubating albumin (50 g/L) in 10 mmol/L glucose for 10 days in the presence of D-lysine (0.25, 0.5, 1.0, and 2.0 mmol/L). The results show that (a) the amount of glucose bound to the four proteins was significantly (P less than 0.05) decreased in the presence of D-lysine at the higher concentrations of glucose; (b) the lower the glucose concentration, the higher was the inhibitory effect of D-lysine; (c) the inhibition of glucose incorporation into proteins correlated directly with the concentration of D-lysine; (d) no inhibition was observed with glycerol. Ketoamine decreased with increase in D-lysine (P less than 0.01). The effective diminution of non-enzymatic glycation by D-lysine highlights its potential use in vivo.
1989
Diabetes, Non enìzymatic Glycation; D-Lysine
01 Pubblicazione su rivista::01a Articolo in rivista
D-LYSINE EFFECTIVELY DECREASES THE NON-ENZYMIC GLYCATION OF PROTEINS INVITRO / Sensi, M; Pricci, F; Derossi, Mg; Morano, S; Dimarlo, U. - In: CLINICAL CHEMISTRY. - ISSN 1056-599X. - 35:3(1989), pp. 384-387.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1627403
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 35
social impact