Motivation: Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computational approaches able to offer valuable, faster and cheaper alternatives to classical experimental methodologies used for the study of antibody-antigen complexes. Results: Here, we present proABC-2, an update of the original random-forest antibody paratope predictor, based on a convolutional neural network algorithm. We also demonstrate how the predictions can be fruitfully used to drive the docking in HADDOCK.

ProABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking / Ambrosetti, F.; Olsen, T. H.; Olimpieri, P. P.; Jimenez-Garcia, B.; Milanetti, E.; Marcatilli, P.; Bonvin, A. M. J. J.. - In: BIOINFORMATICS. - ISSN 1367-4803. - 36:20(2020), pp. 5107-5108. [10.1093/bioinformatics/btaa644]

ProABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking

Ambrosetti F.;Olimpieri P. P.;Milanetti E.;
2020

Abstract

Motivation: Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computational approaches able to offer valuable, faster and cheaper alternatives to classical experimental methodologies used for the study of antibody-antigen complexes. Results: Here, we present proABC-2, an update of the original random-forest antibody paratope predictor, based on a convolutional neural network algorithm. We also demonstrate how the predictions can be fruitfully used to drive the docking in HADDOCK.
2020
Antigen-Antibody Complex; Binding Sites, Antibody; Software; Algorithms; Neural Networks, Computer
01 Pubblicazione su rivista::01a Articolo in rivista
ProABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking / Ambrosetti, F.; Olsen, T. H.; Olimpieri, P. P.; Jimenez-Garcia, B.; Milanetti, E.; Marcatilli, P.; Bonvin, A. M. J. J.. - In: BIOINFORMATICS. - ISSN 1367-4803. - 36:20(2020), pp. 5107-5108. [10.1093/bioinformatics/btaa644]
File allegati a questo prodotto
File Dimensione Formato  
Ambrosetti_proABC-2_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 215.46 kB
Formato Adobe PDF
215.46 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1626479
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact