Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/Wp is expected for a passive least-material heat sink developed for 4000x applications.

Enhancing ultra-high CPV passive cooling using least-material finned heat sinks / Micheli, L.; Fernandez, E. F.; Almonacid, F.; Reddy, K. S.; Mallick, T. K.. - 1679:(2015), pp. 1-7. (Intervento presentato al convegno 11th International Conference on Concentrator Photovoltaic Systems, CPV 2015 tenutosi a Aix-les-Bains, France) [10.1063/1.4931563].

Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

Micheli L.;
2015

Abstract

Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/Wp is expected for a passive least-material heat sink developed for 4000x applications.
2015
11th International Conference on Concentrator Photovoltaic Systems, CPV 2015
concentrating photovoltaics; ultra-high concentration; heat transfer
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Enhancing ultra-high CPV passive cooling using least-material finned heat sinks / Micheli, L.; Fernandez, E. F.; Almonacid, F.; Reddy, K. S.; Mallick, T. K.. - 1679:(2015), pp. 1-7. (Intervento presentato al convegno 11th International Conference on Concentrator Photovoltaic Systems, CPV 2015 tenutosi a Aix-les-Bains, France) [10.1063/1.4931563].
File allegati a questo prodotto
File Dimensione Formato  
Micheli_Enhancing_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 870.34 kB
Formato Adobe PDF
870.34 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1625614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact