We study the time evolution of an incompressible fluid with axial symmetry without swirl, assuming initial data such that the initial vorticity is very concentrated inside N small disjoint rings of thickness ε and vorticity mass of the order of | log ε| - 1. When ε→ 0 , we show that the motion of each vortex ring converges to a simple translation with constant speed (depending on the single ring) along the symmetry axis. We obtain a sharp localization of the vorticity support at time t in the radial direction, whereas we state only a concentration property in the axial direction. This is obtained for arbitrary (but fixed) intervals of time. This study is the completion of a previous paper [5], where a sharp localization of the vorticity support was obtained both along the radial and axial directions, but the convergence for ε→ 0 worked only for short times.

Global time evolution of concentrated vortex rings / Butta', P.; Cavallaro, G.; Marchioro, C.. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - 73:2(2022). [10.1007/s00033-022-01708-w]

Global time evolution of concentrated vortex rings

Butta' P.;Cavallaro G.
;
Marchioro C.
2022

Abstract

We study the time evolution of an incompressible fluid with axial symmetry without swirl, assuming initial data such that the initial vorticity is very concentrated inside N small disjoint rings of thickness ε and vorticity mass of the order of | log ε| - 1. When ε→ 0 , we show that the motion of each vortex ring converges to a simple translation with constant speed (depending on the single ring) along the symmetry axis. We obtain a sharp localization of the vorticity support at time t in the radial direction, whereas we state only a concentration property in the axial direction. This is obtained for arbitrary (but fixed) intervals of time. This study is the completion of a previous paper [5], where a sharp localization of the vorticity support was obtained both along the radial and axial directions, but the convergence for ε→ 0 worked only for short times.
2022
Incompressible Euler flow; vortex rings
01 Pubblicazione su rivista::01a Articolo in rivista
Global time evolution of concentrated vortex rings / Butta', P.; Cavallaro, G.; Marchioro, C.. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - 73:2(2022). [10.1007/s00033-022-01708-w]
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Global-time-2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 504.35 kB
Formato Adobe PDF
504.35 kB Adobe PDF   Contatta l'autore
Buttà_preprint_Global-time-2022.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 380.14 kB
Formato Adobe PDF
380.14 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1625407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact